
The Full Transparency 
System 



White paper 

Overview 

As one of today’s leading tech companies with a 
core goal of connecting people to each other and 
information, Verizon understands that innovation 
is continuous and success depends on the ability to 
build trust with the public. The pursuit of a better 
newsroom experience led us to explore ways to 
reinforce our commitment to transparency. 

Full Transparency incorporates blockchain 
technology in an effort to set the standard in corporate 
communications. Blockchain enables us to securely 
and unalterably publish news releases. The 
technology helps create a definitive log of published 
content and any changes made to that content. The 
functionality and design used in the technology enable 
clear distinctions between tracked and untracked text 
content. Visual queues highlight the changes made to 
published news releases, including minor linguistic 
edits and statistical updates, as well as major factual 
corrections. 

Purpose 

This paper outlines: 
• How Full Transparency’s protocols are stacked 
• What technology stands behind this blockchain 

system 
• What public key infrastructure (PKI) is used within 

the system 
• How many primary certificates are used in the PKI 
• How timestamp proofs are validated 
• Which hashing function is used in the system 
• Which specific accumulator is used in the system 
• How system users can commit articles to 

the blockchain 
• Best practices for displaying committed articles 

and history to the end-user. 
• How to get in touch to learn more about and utilize 

this technology in other organizations 

1 



 

White paper 

Stack 

Full Transparency exists as a collection of layered 
protocols, and each of these layers is oblivious to the 
layer above. This design choice was made to allow the 
system to adapt to future needs while only forcing a 
layer to perform functions deemed absolutely 
necessary. 

The most fundamental layer of the system is a fully 
transparent record system. Within this context, that 
record system is a blockchain. The purpose of this 
ledger is to allow records to be written in an auditable 
system where the ordering of those records may be 
authenticated. 

On top of this ledger is a system that allows the 
cryptographic keys of an organization to be publicly 
proven. This allows organizations to leverage those 
keys for the creation of auditable, timestamped digital 
signatures. This system is the public key infrastructure 
of Full Transparency. 

Full Transparency is a non-repudiation system that 
leverages the public key infrastructure described 
above to create a repository of publicly auditable 
statements. These statements may be versioned and 
updated to accommodate the needs of enterprise 
operation. 

The Full Transparency system leverages the 
timestamping capabilities of the underlying public key 
infrastructure to allow web browsers and mobile 
applications to authenticate the integrity of the data 
and origination of a piece of posted information without 
requiring direct access to the blockchain. Direct 
blockchain access is required to perform complete 
historical audits. 

This layer of the stack is the application-specific 
tooling that may be run in the environment of an end 
user’s device to verify the origination and recency of 
any publicly signed documents within a Full 
Transparency system. All of the formal treatment 
with respect to these systems may be found in the 
GutHub organization located here. 

Open Source 

The Full Transparency system is based on open-
source tooling, and has been designed as a general 
purpose protocol that may work in many different 
settings. The Blockchain that stands behind Full 
Transparency is the MadNetwork blockchain. The 
technology that stands behind this blockchain is similar 
in nature to those technologies found in Certificate 
Transparency systems. 

On top of this blockchain a public key infrastructure 
(“PKI”) has been built by AdLedger. This PKI is based 
on a public standard and with an open source 
implementation. This general purpose PKI is the basis 
of non-repudiation within the Full Transparency 
system. 

Open source tooling allows others seeking to adopt 
the standard being defined within Full Transparency 
to do so easily. 

2 

https://github.com/MadBase/


White paper 

The Blockchain 

Within Full Transparency, the blockchain acts as a 
verifiable datastore into which information may be 
written for auditability. The information that is written to 
the blockchain is the minimum amount of information 
that allows an auditor to know what information is 
being claimed by an entity, when that information was 
publicly claimed by an entity, the identity of the entity 
making these claims, and if any of the information 
claimed has been tampered with. This is the basis for 
Full Transparency. 

Before the technical details of the Full Transparency 
system itself may be addressed, the infrastructure on 
which it operates must be introduced. This 
requirement is manifest from the fact that the 
blockchain provides the underlying data integrity 
protections for information written into the system but 
is ignorant of the Full Transparency system itself. 

In order for information from the blockchain to be used 
in an auditable manner, users must know where to find 
all of the information written by each entity. Without 
some mechanism to find all information associated 
with an entity, audits of that data could not occur. The 
user must also know when each change to that 
information occurred, and that the information is 
protected from unauthorized modification. 
Fortunately, these requirements are directly aligned 
with the reasons blockchain technology was invented. 

In order to address the issue of finding all information 
written into the blockchain by a specific entity, the 
concepts of accounts and account namespaces are 
used. An account is defined by the hash of a public key 
from an asymmetric key pair and the asymmetric 
algorithm of that key pair. 

Each account owns an account namespace within the 
blockchain. An account namespace is a constructed 
index of all data written to the blockchain by a specific 
account such that that information may be easily 
accessed and tracked. Data may only be written into 
an account namespace by proving knowledge of the 
account private key using digital signatures. 

Anyone may read the contents of an account 
namespace, but the rules of the blockchain have been 
constructed such that only the owner of an account 
may write data such that it will be indexed as a 
member of the owned account namespace. This rule 
is enforced through the use of digital signatures and 
the association of asymmetric keys pairs with 
accounts. 

Every account namespace acts as an isolated, 
iterable, key-value store with the ability to hold up to 
2256 keys. Due to this construction, any piece of data 
written into the blockchain may be uniquely identified 
by the account that owns the namespace in which the 
data was written and the key at which the data exists. 

Each time information is written into an account 
namespace, the owner of the namespace must 
construct a signed transaction of the changes and 
data to be written. These signed transactions must be 
sent to the blockchain for inclusion in a block. Once 
included in a block, users may establish when a 
change in an account namespace occurred using the 
immutable history of the blockchain. The user may 
also be confident that only the owner could have 
written the change due to the use of digital signatures. 
Unfortunately a digital signature only proves 
knowledge of the private key from an asymmetric key 
pair. As such, another means to link the real world 
entity to the public key of the key pair is necessary. 

3 



White paper 

Identity Verification 

To address the issue of identity, an application specific 
PKI has been developed. PKIs provide a solution to the 
problem of linking a real world entity with a digital 
identity. This is accomplished by allowing a set of 
trusted actors to be the authority of digital identity 
within some domain. 

Granting the authority to assign digital identity to a 
small set of actors makes proving a digital identity 
much more simplistic, but that same authority may also 
be abused to wrongfully link digital identities to real 
world entities without the knowledge or consent of the 
entity. To combat this abuse vector, the blockchain 
itself has been leveraged to provide auditability and 
accountability for issuance activities of the authorities 
as well. The complete details of this system are beyond 
the scope of the current document. The PKI that has 
been constructed operates on a short-lived certificate 
model. The following section addresses additional 
information about the certificates. 

In this way, statements written to the blockchain may 
be trusted as having a provable origination. The 
certificates also name blockchain account 
namespaces where the parent certificates must be 
written to the blockchain to be considered valid. This 
requirement provides a unique solution to both the 
problem of Certificate Transparency as well as 
Certificate Revocation. Any certificate not written to 
the chain must be treated as invalid. This also implies 
all children certificates are also invalid. Thus, 
AdLedger is incapable of issuing a fraudulent 
certificate that is not an auditable element of the 
blockchain. Further, since all certificates must exist in 
the blockchain to be treated as valid, revocation may 
be performed through modification of the blockchain. 

The discussion up to this point has focused on how 
the blockchain is constructed, how this construction 
facilitates the construction of owned namespaces 
and how identity is established for those 
namespaces. The data that is written to the 
blockchain will be addressed in the following sections. 

Certifications 

Certificates in the Full Transparency system allow an 
end user to validate that a public key and/or blockchain 
account is an acceptable form of digital identity for a 
real world entity. The validation process of these 
certificates is analogous in nature to the process of 
verifying a SSL certificate chain, but the certificates 
themselves are based on the JOSE standard that 
underpins OAUTH technologies. 

A validated certificate is a proof of ownership for the 
blockchain account namespaces themselves due to 
the inclusion of both accounts and public keys in these 
objects. 

Document Hashing 

When a document is intended to be published with Full 
Transparency, a cryptographically secure fingerprint 
of the data must be formed. This fingerprint must be 
constructed using a cryptographically secure hashing 
function. The hash function used by Full 
Transparency, at this time, is Sha256. 

The fingerprint may be built in one of two ways. The 
first way it may be constructed is by hashing the entire 
contents of the data using a cryptographically secure 
hashing algorithm. 

4 



White paper 

Document Hashing 

The second way a fingerprint may be formed is by 
construction of a Merkle Tree. Specifically, the tree 
implementation used is a Compact Sparse Merkle 
Tree based on the open source Aergo State Trie. We 
selected this implementation based on the ability to 
insert values at specific locations, the highly optimized 
logic, the ability to provide both proofs of inclusion, the 
ability to provide proofs of exclusion, and the 
concurrent nature of the underlying algorithm. In order 
to insert the data into a Merkle Tree, the data must first 
be split into chunks. At this time, the chunking algorithm 
is based on whitespace. The original content is fed 
through the chunking algorithm to generate an array of 
chunks. Each of these chunks is then hashed using 
Sha256 in order to generate an array of hashes. 

Thus, for each chunk, there is a single hash. These 
hashes are then inserted into the Merkle Tree such 
that the keys of the tree represent the index in the 
array of chunks and the value is the hash of the chunk. 
The resultant root hash of the tree is treated as the 
fingerprint of the associated data, and this fingerprint is 
the only hash that is stored. Although this operation is 
far more complex than the first operation of simply 
hashing the data, the result is that subsets of the data 
may be proven using Merkle Proofs. The motivation for 
this capability is discussed in the future work section of 
this paper. 

5 



White paper 

Non-Repudiation Objects 

For each set of information that is to be tracked in the 
blockchain, a non-repudiation object must be 
constructed. These objects are stored along with the 
original content for all versions. These objects, in 
addition to a proof object concerning the state of the 
blockchain may be used to prove the information 
claims are valid on resource-constrained systems. 
These objects are based on the JWS standard. This 
document does not focus on the header of these JWS 
objects. The header section is concerned with 
validation of the PKI components of the system. The 
claims of the JWS objects are those elements directly 
related to the core focus of this document. 

The Claims object contains the following fields: 

1. JTI 
2. Revision 
3. IssuedAt 
4. Exp 
5. MMD 
6. Chunking 
7. MerkleRoot 
8. Classification 
9. PreviousRevNum 
10. HeadURI 
11. NodeURI 
12. ContentURI 
13. PreviousContentURI 

The JTI field is set to the fingerprint of the version zero 
information. This serves as an identifier for all future 
versions as well. The Revision field is a monotonically 
increasing integer that is incremented for each new 
version of the document. The MerkleRoot field stores 
the fingerprint of the current version. IssuedAt is the 
unix timestamp for the time of creation of the object. 
MMD is the Maximum Merge Delay. Exp is the unix 
timestamp after which the object must be treated as 
invalid. 

The MMD allows a delay between when an object is 
constructed and when it is tracked in the block chain. 
During the time from IssuedAt until the time defined by 
IssuedAt + MMD, a non-repudiation object may be 
treated as valid even if it does not exist in the chain. 
The HeadURI specifies a URI at which the latest 
revision exists for the given JTI. The HeadURI 
specifies a URI at which the minimum revision number 
may be requested for the given JTI. The minimum may 
not always be zero due to the requirement that some 
versions may be omitted from the record, but proof of 
their existence may never be removed. The NodeURI 
is a URI that may be called to return the maximum 
revision number may be requested for the given JTI. 
The ContentURI specifies a URI at which the raw 
content of the version of the associated Claims object 
may be requested. The PreviousContentURI and 
PreviousRevNum follow the same conventions as the 
other URI objects. It is of note the URI objects are not 
actively used at this time but have been included for 
future reference in other settings. The Classification 
field is, at this time, always set to PUBLIC. This field 
may be used to track if the non-repudiation object 
should be public domain. The Chunking field specifies 
the chunking algorithm used when forming the hash. 
algorithm. 

6 



White paper 

Blockchain DataStructures & Versioning 

In order to accommodate the fact that a document 
may be revised after initial publication, each document 
is tied to a unique identifier. This identifier is the 
fingerprint of the content from the first version of a Full 
Transparency statement. This identifier is held 
constant across all versions of the content. 

As previously stated, the reason the revision number is 
not a strictly monotonically increasing integer is to 
accommodate the circumstance that a revision was 
made in error and must be stricken from the record. 
This action may be made apparent in the record 
through a jump in revision number greater than one. In 
this way, content that must be removed for legal 
reasons may be removed gracefully without breaking 
the protocol while also allowing transparency with 
respect to the fact that a revision has been omitted 
from the record. 

The blockchain itself stores the MerkleRoot at the 
location identified by the JTI and Revision. This object 
also stores the next, current, and previous valid 
Revision numbers for iteration of revisions. In addition 
to these objects, a head object is also written to the 
blockchain namespace. The head object is written to 
the location of the JTI for the document. The head 
object identifies the latest revision number of a 
document at any point in time. Thus, in order to iterate 
the full revision history of a document, the head object 
may be parsed for the latest revision number. Given the 
latest revision number and a document identifier each 
object may be read from the blockchain namespace 
one node at a time. Since each node references the 
previous valid revision number, each prior node may be 
traversed until a node is found that has a previous 
revision number and current revision number that are 
equal. 

This node represents the tail of the linked list that 
defines the revision history of a document. The 
associated JWS objects may be requested from the 
issuer of the objects along with the content for audit 
purposes. 

Future Work 

The future work for this project is to enable those 
features that have been designed to allow third party 
validation of information in a trustless manner. In order 
to accomplish this goal, several features have been 
included. 

First, in order to allow devices to validate data from the 
blockchain a novel certificate proof system has been 
constructed. This proof system also allows for the 
construction of short-lived proofs against the non-
repudiation objects themselves. The combination of 
such proofs allows an verifying party to know that a 
certificate chain was valid at a specific point in time and 
that a non-repudiation object also existed during this 
same time frame. 

The manner in which these proofs are constructed is 
by treating the blockchain namespace of all 
certificates and non-repudiation statements as a 
directed acyclic graph. This is possible due to the 
requirement that certificates do not perform cross-
signing. Thus, a Merkle Tree may be constructed 
across all valid certificates and non-repudiation 
objects at fixed intervals in time. The root hash of this 
Merkle Tree is signed by a set of designated keys that 
are claimed in the intermediate certificates of the 
certificate chain. This signed object is then published 
into the blockchain such that an observing party may 
construct proofs of inclusion against the Merkle Root. 

7 



White paper 

These proofs of inclusion may be constructed by any 
party in a trustless manner since the root hash itself is 
signed by the certificate authority. This is analogous to 
an Online Certificate Status Protocol with transparent 
stapling. The eventuality of combining these proof 
objects with the Merkle Tree based document hashing, 
is to allow a third party to prove a sub quote of a 
claimed document in the context of a third party 
system. 

Presentation and Implementation 
Full Transparency is engineered in a way that is 
intended to work with any number of content 
authoring/managing systems and any front-end web 
or app technology. By building API layers that an 
existing website can communicate with, the authoring 
of content, storage of content, and blockchain tasks 
can work in parallel without disrupting the current 
architecture of existing apps or websites–and run on 
the same or different infrastructure if needed. This 
section describes the general architecture and 
functions of the authoring, content storage, and 
presentation (Frontend UI) aspects that make up Full 
Transparency. 

Architecture 

Example: 

General example of a decoupled architecture. 

As shown in the basic architecture diagram above, the 
Full Transparency system has been designed to 
separate concerns and decouple the authoring, 
presentation, content storage, and blockchain 
systems. 

It is recommended that any system that incorporates 
Full Transparency follow the same base principles. 

8 



White paper 

Authoring 

The authoring system should be aware of and 
commit data when: 
• Adding new content 
• Revising existing content 

It is highly recommended that any content that is 
considered “published and publicly available” be 
committed to the blockchain as new content or as a 
revision to existing content. Depending on the content 
management system used, this can be achieved 
programmatically by calling a decoupled “blockchain 
admin API” at publishing time via a hook or direct 
function call for example. 

When handling situations where some content may be 
considered “on-chain” and committed and other 
content will not be committed in the same content 
management system, it is important to make that 
decision at the text content’s inception. This ensures 
that the complete history of that content is tracked. It 
defeats the purpose of transparent communications to 
retroactively add content to the blockchain without 
notifying users either that: 

1. The content pre-dates the installation of the Full 
Transparency system 

2. For some reason, the article was not committed at 
inception and there is an immediately accessible 
explanation available to the frontend user. 

Content Storage 
A key infrastructure element is the ability to maintain a 
record of every version of each article, in its entirety. 
When articles are written or edited and then 
committed to the blockchain, the raw data goes 
through a hashing process and the original article 
content must be stored (un-hashed) off-chain, in an 
independently maintained storage location where it will 
persist and be accessible (readable) to all systems. 

The offchain storage system may be built on any 
number of technologies to store the raw text or 
content data, e.g, MongoDB, AWS S3, Google Cloud 
Storage, Interplanetary File System (IPFS). As long as 
the system(s) used for storing data offer a valid URI 
that is publicly readable, the system can store and use 
a single or multiple set of URI’s to link the hashed 
commit with the un-hashed raw data. Off-chain 
storage is a redundant storage system with the 
capability of holding multiple storage buckets (e.g., 
servers) at the same time. 

It is advisable, while all content and its history (past 
versions) will be stored off-chain the current (latest) 
version of the content that is served to the frontend 
should continue to live within the content management 
ecosystem (or other content server) to maintain 
frontend performance when not accessing the full 
history. 

The off-chain storage exists as a repository to ensure 
article data persists with redundancy, for the purpose 
of checking published versions with the last, 
blockchain committed version for accuracy, and for 
being able to read and compare prior committed 
versions of any given piece of content. 

9 



White paper 

Frontend Presentation 

The frontend (website or app interface) is responsible 
for the general presentation of the data. The 
blockchain data exists ‘under the hood’ and it is the 
responsibility of the frontend to be ‘transparent’ and 
represent the data in its entirety. Best practices here 
include: 

• Show all revisions and their data. No content should 
be omitted. 

• Display the timestamp. 
• Ensure users can clearly see the difference between 

versions. 

How the historical data is displayed and highlighted 
can be determined by the authoring party. Inline or 
side-by-side comparisons that make the changes 
easily understandable are highly recommended. 

If you or your organization are interested in utilizing 
blockchain technology to help build credibility and 
transparency in publishing content, please get in touch 
at fulltransparency@verizon.com 

10 

mailto:fulltransparency@verizon.com



Accessibility Report



		Filename: 

		2021_White_Paper_Full_Transparency copy.pdf






		Report created by: 

		Diana


		Organization: 

		





 [Personal and organization information from the Preferences > Identity dialog.]


Summary


The checker found no problems in this document.



		Needs manual check: 0


		Passed manually: 2


		Failed manually: 0


		Skipped: 4


		Passed: 26


		Failed: 0





Detailed Report



		Document




		Rule Name		Status		Description


		Accessibility permission flag		Passed		Accessibility permission flag must be set


		Image-only PDF		Passed		Document is not image-only PDF


		Tagged PDF		Passed		Document is tagged PDF


		Logical Reading Order		Passed manually		Document structure provides a logical reading order


		Primary language		Passed		Text language is specified


		Title		Passed		Document title is showing in title bar


		Bookmarks		Passed		Bookmarks are present in large documents


		Color contrast		Passed manually		Document has appropriate color contrast


		Page Content




		Rule Name		Status		Description


		Tagged content		Passed		All page content is tagged


		Tagged annotations		Skipped		All annotations are tagged


		Tab order		Passed		Tab order is consistent with structure order


		Character encoding		Passed		Reliable character encoding is provided


		Tagged multimedia		Passed		All multimedia objects are tagged


		Screen flicker		Passed		Page will not cause screen flicker


		Scripts		Passed		No inaccessible scripts


		Timed responses		Passed		Page does not require timed responses


		Navigation links		Passed		Navigation links are not repetitive


		Forms




		Rule Name		Status		Description


		Tagged form fields		Passed		All form fields are tagged


		Field descriptions		Passed		All form fields have description


		Alternate Text




		Rule Name		Status		Description


		Figures alternate text		Skipped		Figures require alternate text


		Nested alternate text		Passed		Alternate text that will never be read


		Associated with content		Skipped		Alternate text must be associated with some content


		Hides annotation		Passed		Alternate text should not hide annotation


		Other elements alternate text		Passed		Other elements that require alternate text


		Tables




		Rule Name		Status		Description


		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot


		TH and TD		Passed		TH and TD must be children of TR


		Headers		Passed		Tables should have headers


		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column


		Summary		Skipped		Tables must have a summary


		Lists




		Rule Name		Status		Description


		List items		Passed		LI must be a child of L


		Lbl and LBody		Passed		Lbl and LBody must be children of LI


		Headings




		Rule Name		Status		Description


		Appropriate nesting		Passed		Appropriate nesting







Back to Top


