
​

Voice AI Connector Guide
for Implementors

Version E1A

Verizon Confidential
© 2025 Verizon. All Rights Reserved

Voice AI Connector For Implementors E1A

The information contained herein is proprietary and confidential and cannot be disclosed or
duplicated without the prior written consent of Verizon.

Trademarks
Verizon, the Verizon logo are registered trademarks of Verizon. All other trademarks and trade names
referred to in this document are the property of other companies..

Released by
Verizon – ACPD

Copyright © 2025 Verizon
This publication may not be reproduced, stored in a retrieval system, or transmitted in
whole or part, in any form or by any means, electronic, mechanical, audio, photocopying,
recording, or otherwise, without the prior written permission of Verizon, 2424 Garden of
the Gods Road, Colorado Springs, Co. 80919.​

While this information is presented in good faith and believed to be accurate, Verizon
does not guarantee satisfactory results from reliance upon such information.
Verizon reserves the right, without notice, to alter or improve the designs or
specifications of the products described herein.

Nothing herein is to be construed as a warranty or guarantee, expressed or implied,
regarding the performance, merchantability, fitness, or any other matter with respect to
the products, nor as a recommendation to use any product or process in conflict with any
patent.

All products, languages, or trademarked names that are mentioned in this document are
acknowledged to be the proprietary property of the respective owner.

​ Verizon Business Confidential​
​ ​ -2-

Voice AI Connector For Implementors E1A

Contents
1. Voice Assistant with Google Dialogflow CX, Google Text-To-Speech and Google
Speech-To-Text​ 2

1.1. Solution Summary​ 2
1.1.1. Deployment procedures​ 4
1.1.2. Security Considerations for Google CCAI​ 6

1.2. Functional Sequence​ 8
1.2.1. Voice AI network function connects to a Dialogflow Connector using Websockets​8
1.2.2. Dialogflow Connector requests Speech-to-Text recognition​ 8
1.2.3. Dialogflow Connector Connects to Dialogflow​ 8
1.2.4. Dialogflow Connector Receives Recognition Results​ 9
1.2.5. Dialogflow determines intent and returns results​ 9
1.3. Google Dialogflow CX Connector Low-Level Design​ 9
1.3.1. Voice AI network function connects to this Dialogflow Voice AI Connector using
Websockets​ 10
1.3.2. Dialogflow Voice AI Connector requests a media relay session for recording and
audio playback​ 10
1.3.3. Voice AI Connector for Dialogflow Connects to DialogFlow​ 11
1.3.4. Voice AI Connector for Dialogflow initiates recognition​ 12
1.3.5. Voice AI Connector for Dialogflow Receives Caller Audio​ 13
1.3.6. DialogFlow determines final intent and exits​ 14

2. Azure Bot with Azure Speech Synthesis and Azure Recognizer​ 15
2.1. Solution Summary​ 15
2.2. Deployment Procedures​ 16

2.2.1. Create new Azure App Service Web App​ 16
2.2.2. Create a deployment in Azure App Service to deploy the connector to the web
application​ 18
2.2.3. Enable App Service Firewall​ 24
2.2.4. Perform the first deployment​ 26

2.3. Functional Sequence​ 32
2.3.1. Voice AI connects to an Voice AI Connector for Azure Bot using Websockets​ 32
2.3.2. Voice AI Connector for Azure Bot creates new mediaRelay session​ 32
2.3.3. Voice AI Connector for Azure Bot Connects to Azure Bot​ 32
2.3.4. Voice AI Connector for Azure Bot generates prompt audio using text-to-speech
API​ 33
2.3.5. Voice AI Connector for Azure Bot Receives Recognition Results​ 33
2.3.6. Azure Bot processes the recognition results​ 33
2.4. Voice AI Connector for Azure Bot Low-Level Design​ 33
2.4.1. Voice AI connects to this Voice AI Connector for Azure Bot using Websockets​ 34
2.4.2. Voice AI Connector for Azure Bot requests a media relay session for recording
and audio playback​ 34

​ Verizon Business Confidential​
​ ​ -3-

Voice AI Connector For Implementors E1A

2.4.3. Voice AI Connector for Azure Bot Connects to Azure Bot​ 34
2.4.4. Voice AI Connector for Azure Bot initiates recognition​ 36
2.4.5. Voice AI Connector for Azure Bot Receives Caller Audio​ 38

3. Voice AI Websocket API​ 39
3.1. CallOffered​ 40
3.2. CreateSession ​ 41
3.2.1. Request​ 41

3.2.2. Response ​ 41
3.3. Record​ 42

3.3.1. Request​ 42
3.3.2. Response​ 44
3.3.3. Event BargeIn​ 44
3.3.4. Event AudioData​ 45

3.4. StopRecord ​ 46
3.4.1. Request​ 46
3.4.2. Response​ 47

3.5. Play​ 47
3.5.1. Request​ 47
3.5.2. Response​ 48
3.5.3. Event PlayComplete​ 49

3.6. StopPlay​ 50
3.6.1. Request​ 50
3.6.2. Response​ 50

3.7. ReceivedDTMF​ 51
3.7.1. Event​ 51

4. References​ 52

​ Verizon Business Confidential​
​ ​ -4-

Voice AI Connector For Implementors E1A

Revision History

Date Version Revision Description SME Author

2025
Jun 13

E1A Initial Document Draft Brian
Badger

Brian
Badger

​ Verizon Business Confidential​
​ ​ -5-

Introduction:

 This document provides background and implementation instructions for our voice bot
connectors for both Google Customer Engagement Suite with Google AI and for Azure
Voicebots with corresponding speech API’s. Our fully redundant Interactive Voice Response
(IVR) platform, with media relay capabilities, can take direction on customer intent and
treatment from your AI applications with our AI integration connector.

To purchase a Voice AI Connector, work with your Verizon Sales Executive to purchase IP
Contact Center (IPCC). Specifically, the IPIVR Premium option must be ordered. When
purchasing this option, your accompanying SOW will provide you with Verizon Consulting
resources to:

●​ Build your call plan as defined based on your specific requirements
●​ Help to manage the project, coordinating Verizon work with your own work with your AI

provider and the connector.
●​ Provide a source of knowledge about the connector to help with any configuration and

initial troubleshooting questions
●​ Development and implementation of your test plan when all the development work is

deemed complete.
●​ Gain your sign-off of project completion and move to production.

Once you are in production, any concerns or issues that may arise should first be addressed by
your staff to ensure it is not an AI or connector configuration issue. Once this is assessed and
you need Verizon support, please follow your standard IP Contact Center support process by
placing a ticket with the Verizon Enterprise Center. Your IPCC Welcome Kit, found here, can
provide you with further information on placing a support ticket.

Verizon Confidential
-1-

https://www.verizon.com/business/welcome-kits/ip-contact-center/

1.​ Voice AI Connector example using
Google Dialogflow CX, Google
Text-To-Speech and Google
Speech-To-Text

In this example, Google App Engine will host the Voice AI Connector for Google Cloud
Platform written in Node 22.. It will provide communications between the Voice AI Connector
network function and Google Dialogflow CX, Google Text-To-Speech and Google
Speech-To-Text.

https://www.verizon.com/business/supportfiles/voice_ai_connector_examples_2025-09-02.tar

Verizon Confidential
-2-

https://www98.verizon.com/business/supportfiles/voice_ai_connector_examples_2025-09-02.tar

This provides automatic management of Google speech API access control without the use of
credentials.
Other hosting solutions are possible, but hosting outside of the Google Cloud Platform
ecosystem may require separate management of API credentials.
In addition to the steps outlined below, the Google Cloud Platform project where App Engine is
deployed must also enable Dialogflow CX with speech-to-text and text-to-speech, and at least
one Dialogflow agent must have been built and deployed. One connector instance can support
multiple Dialogflow agents and multiple languages within the project.
Geographic redundancy can be achieved by duplicating this design in multiple Google Cloud
Platform projects, each within a different geographical region. If multiple connectors are
deployed in this way, work with your Verizon representative to ensure that your Verizon IPIVR
callplans are updated to implement failover and load-balancing logic between these regions.

1.1.​ Solution Summary

On call arrival, the Voice AI network function connects to an external DialogFlow Connector
running in Google App Engine. This Voice AI Connector connects to Dialogflow and directs the
call behavior through websocket messages sent to the Voice AI network function, which are then
relayed between the media relay and the Voice AI Connector. Media is recorded by the media
relay and sent in websocket messages to the connector, which uses Google Dialogflow
speech-enabled APIs for transcription and natural language understanding.

Verizon Confidential
-3-

The application logic exists in the Dialogflow Connector and the Dialogflow instance, while the
Voice AI network function acts as a relay of the messages.

Inbound Voice AI websocket traffic at Google App Engine is terminated at a Google Front End
(GFE) as a TLS server, where the Google External Application Load Balancer then routes to the
Google App Engine container running on a Google Compute Engine instance using an Envoy
HTTP/2 API stream to the App Engine container envoy proxy sidecar.

Websocket traffic is encrypted end-to-end from the Voice AI network function to the Google
External Application Load Balancer as HTTPS (external to Google), and encrypted end-to-end
from the Google External Application Load Balancer to the App Engine container using HTTP/2
(internal to Google).

Verizon Confidential
-4-

None

None

1.1.1.​ Deployment procedures

To deploy the connector to Google App Engine to a new project, follow these steps using git and
the Google Cloud CLI tool:

Run npm update

npm update

Configure the Google App Engine app.yaml file for the project, VPC (if any), instance class and
runtime environment:

runtime: nodejs
env: flex
runtime_config:
 operating_system: "ubuntu22"
 runtime_version: "20"
service_account: <SERVICE ACCOUNT>@<PROJECT ID>.iam.gserviceaccount.com
service: google-dialogflow-cx
inbound_services:
- warmup
instance_class: f1
handlers:
- url: /.*

Verizon Confidential
-5-

None

None

None

 secure: always
 redirect_http_response_code: 301
 script: auto

Configure the service for the Google project, location, agent and language by editing config.json
file

...
"projectId": "PROJECT_ID",
"location": "global",
"agentId": "AGENT_ID",
"languageCode": "en-US",
 "ssmlGender":"SSML_VOICE_GENDER_FEMALE",
...

Create the Google App Engine instance for the project, region and service account

Before deployment, ensure that the Google project service account has the following IAM roles:

App Engine Deployer
App Engine flexible environment Service Agent
Artifact Registry Reader
Dialogflow API Client
Logs Writer
Monitoring Metric Writer
Storage Object Viewer

Then create the App Engine service, firewall settings, and deploy:

gcloud auth login
gcloud config set project $PROJECT

Verizon Confidential
-6-

gcloud app create --region=$REGION
--service-account=$SERVICEACCOUNT@$PROJECT.iam.gserviceaccount.co
m
gcloud app firewall-rules create 1 --action=ALLOW
--source-range=166.35.66.78
gcloud app firewall-rules create 2 --action=ALLOW
--source-range=166.50.89.77
gcloud app firewall-rules create 3 --action=ALLOW
--source-range=166.46.163.188
gcloud app firewall-rules create 4 --action=ALLOW
--source-range=166.50.88.5
gcloud app firewall-rules create 5 --action=ALLOW
--source-range=166.50.29.189
gcloud app firewall-rules create 6 --action=ALLOW
--source-range=166.35.65.2
gcloud app firewall-rules create 7 --action=ALLOW
--source-range=166.40.100.100
gcloud app firewall-rules create 8 --action=ALLOW
--source-range=165.122.81.100
gcloud app firewall-rules create 9 --action=ALLOW
--source-range=152.189.67.133
gcloud app firewall-rules create 10 --action=ALLOW
--source-range=152.189.67.181
gcloud app firewall-rules create 11 --action=ALLOW
--source-range=152.189.74.5
gcloud app firewall-rules create 12 --action=ALLOW
--source-range=152.189.74.53
gcloud app firewall-rules update 2147483647 --action=DENY
gcloud app deploy

To deploy the connector in a geo-redundant model, repeat these procedures for each region.

1.1.2.​ Security Considerations for Google CCAI

While specific security requirements will be driven by the customer application (for example, a
customer application that handles PCI data will have PCI requirements, etc), general data
handling procedures should be observed by the application developer at all stages.

Verizon Confidential
-7-

First, data that is carried over the connector APIs – in both directions – must be treated as
sensitive by default. Logging at the callplan and connector must be disabled by default, and
data sent and received over the connector APIs should be treated as sensitive by default.

The data carried over this path is comprised of 1) call arrival metadata including caller
identification (ANI), dialed number information (DNIS), and call verification data
(STIR/SHAKEN), 2) recorded caller utterances, 3) synthesized application prompts, and 4)
Dialogflow Intent Engine final results including application-specified parameters.

Handling of sensitive data within the Dialogflow agent itself can be implemented by
marking all sensitive fields as confidential to enable Data Loss Prevention logic which will
redact the sensitive data in all logging within Google APIs. Any DLP requirement must be
satisfied by the application developer within the Dialogflow project as it cannot be accomplished
externally by the connector.

Access to the Dialogflow Connector is restricted to the Verizon OHSS IP addresses listed in
Section 4 using the App Engine firewall. This prevents access to the connector from IP
addresses not listed.

Verizon Confidential
-8-

1.2.​ Functional Sequence
1.2.1.​ Voice AI network function connects to a Dialogflow

Connector using Websockets
●​ The Voice AI network function callplan loads the Voice AI network function with the

Voice AI Connector WSS URI set to the Voice AI Connector for that customer project.
●​ The Voice AI network function connects to the Dialogflow Connector using the Database

SIBB to create a new websocket connection.
●​ The Voice AI network function sends a CallOffered websocket message to the Voice AI

Connector.
1.2.2.​ Dialogflow Connector requests Speech-to-Text

recognition
●​ The Dialogflow Connector sends a CreateSession mediaRelay message to Voice AI

network function.
●​ The Voice AI network function automatically identifies the CreateSession message and

proceeds to create the media relay session.
●​ The Voice AI network function automatically relays all media relay messages from the

media relay to the Dialogflow Connector websocket. The Dialogflow Connector receives
the CreateSession response.

1.2.3.​ Dialogflow Connector Connects to Dialogflow
●​ The Dialogflow Connector connects to dialogflow.cloud.google.com using the

appropriate credentials.

Verizon Confidential
-9-

●​ The Dialogflow Connector creates a new Dialogflow conversation with the Dialogflow
API.

●​ The Dialogflow API sends initial prompt text with utterance audio generated by Google
Text-to-Speech.

●​ The Dialogflow Connector constructs and sends a media relay Record message. The
Voice AI network function relays this message to the media relay, which arms the voice
activity detector.

●​ The Dialogflow Connector constructs and sends one or more media relay Play message
with the audio received from the Dialogflow API.

●​ The Voice AI network function forwards the Play messages to the media relay, which
queues each block of audio and begins audio playback.

1.2.4.​ Dialogflow Connector Receives Recognition Results
●​ The media relay voice activity detector detects voice and begins streaming AudioData

messages with the caller utterance.
●​ The Voice AI network function continuously relays AudioData messages to the

Dialogflow Connector.
●​ The Dialogflow Connector forwards the recorded audio to Dialogflow speech-to-text

streaming API.
●​ The media relay voice activity detector detects end-of-speech and sends an EndOfSpeech

message.
●​ The Dialogflow Connector receives the EndOfSpeech and closes the Dialogflow API

voice stream.
●​ The Dialogflow API processes the streamed utterance, and responds with an Intent object

possibly including additional text-to-speech prompting, repeating the process.
1.2.5.​ Dialogflow determines intent and returns results

●​ The Dialogflow API returns a final Intent object with all collected intent and data
elements populated.

●​ The Dialogflow Connector handles the results, populating an Exit message with the
Intent and parameters.

●​ The Voice AI network function exits, closing the media relay and Dialogflow Connector
websockets.

●​ The Voice AI Connector parses the returned results and executes business logic based on
them.

1.3.​ Google Dialogflow CX Connector Low-Level Design

This service is a websocket server that implements the Voice AI websocket protocol to control
Voice AI network function media relay resources and a Google Dialogflow CX client.

The sequence of integration follows this general flow:

Verizon Confidential
-10-

1.3.1.​ Voice AI network function connects to this
Dialogflow Voice AI Connector using Websockets

●​ The Voice AI Connector-enabled callplan initializes the Voice AI network function with
the WSS URI set to the cloud-hosted Dialogflow connector service. The URI can have
URI parameters "agent", "language", or "session" to override defaults from config.json.
Any other parameters will be passed as parameters to the Dialogflow session.

●​ The Voice AI network function connects to the Dialogflow connector using the Database
SIBB to create a new websocket connection.

●​ The Voice AI network function sends a CallOffered websocket message to the connector.
●​ The connector parses the CallOffered message and parses fields from the WSS URI to

override agent, language, and session parameters for the Dialogflow session, if provided

 if(parsed_message.method === 'CallOffered')
 {
 // start with defaults
 session = parsed_message;
 session.digitBuffer = "";
 session.callId = parsed_message.ani.substring(6,10);
 session.dialogflowSessionId = uuid.v4();
 session.projectId = config.projectId;
 session.location = config.location;
 session.agentId = config.agentId;
 session.languageCode = config.languageCode;
 connection.callId = session.callId;

 session.parameters = { fields: { } };
 requestURL.searchParams.forEach((value, name, searchParams) => {
 // override based on the URI params
 if(name === "agent")
 session.agentId = value;
 else if(name === "language")
 session.languageCode = value;
 else if(name === "session")
 session.dialogflowSessionId = value;
 else
 session.parameters.fields[name] = { kind: 'stringValue',
stringValue: value };

 });
 logMessaging(session.callId,"FROM VERIZON
IPIVR",message.utf8Data);
 onCallOffered(session,connection);
 }

1.3.2.​ Dialogflow Voice AI Connector requests a media
relay session for recording and audio playback

The Voice AI network function sends a CreateSession message to Voice AI Connector for
Dialogflow on the websocket connection:

Verizon Confidential
-11-

function sendCreateSession(session,connection) {
 var CreateSession =
 { "method":"CreateSession",
 "type":"mediaRelay",
 "version":1.0,
 "sessionId": uuid.v4(),
 "requestId": uuid.v4()
 };
 logMessaging(session.callId,"TO VERIZON
IPIVR",JSON.stringify(CreateSession));
 connection.sendUTF(JSON.stringify(CreateSession));
}

The Voice AI network function automatically identifies the CreateSession message and proceeds
to create the media relay session.
The Voice AI network function automatically relays all media relay messages from the media
relay to the Voice AI Connector websocket. The Voice AI Connector receives the CreateSession
response.

1.3.3.​ Voice AI Connector for Dialogflow Connects to
DialogFlow

●​ This Voice AI Connector for Dialogflow connects to dialogflow.cloud.google.com using
the appropriate credentials and creates a new Dialogflow session using the Dialogflow
CX API

 const request = {
 session: session.dialogflowSessionPath,
 queryInput: {
 // welcome intent
 intent: { intent: "projects/" + session.projectId +
 "/locations/"+session.location +
 "/agents/" + session.agentId +
 "/intents/00000000-0000-0000-0000-000000000000" },
 languageCode: session.languageCode
 },
 queryParams: {
 "payload": {
 "fields": {
 "telephony.caller_id": { kind: 'stringValue', stringValue:
session.ani }
 }
 },
 "parameters": session.parameters
 }
 };
 dialogflowDetectIntent(request,session,connection);

●​ The Dialogflow API returns a welcome intent including a text prompt and rendered TTS
audio for Voice AI network function to play

Verizon Confidential
-12-

1.3.4.​ Voice AI Connector for Dialogflow initiates
recognition

●​ This Voice AI Connector sends Play message to Voice AI network function with prompt
audio, in 80kB chunks.

function sendPlay(audio,session,connection) {
 var start = 58;
 var length = audio.length;
 while(start < length) {
 var audioBuffer = audio.slice(start,start+80000);
 var Play = {
 "method":"Play",
 "version":"1.0",
 "sessionId":session.sessionId,
 "requestId":uuid.v4(),
 "audioData": audioBuffer.toString('base64'),
 "bargeIn": true
 };
 start += 80000;
 connection.sendUTF(JSON.stringify(Play));
 delete Play.audioData;
 logMessaging(session.callId,"TO VERIZON IPIVR",JSON.stringify(Play));
 }
}

●​ The media relay queues the prompt audio for immediate playback.
●​ The audio play completes, and the Voice AI network function sends a PlayComplete
●​ This Voice AI Connector for Dialogflow constructs and sends a media relay Record

message. The Voice AI network function relays this message to the media relay.

async function recognize(session,connection) {
 var Record = {
 "method":"Record",
 "version":"1.0",
 "sessionId":session.sessionId,
 "requestId":uuid.v4(),
 "speechDetectionSensitivity": config.speechDetectionSensitivity,
 "utteranceEndSilence": config.utteranceEndSilence
 };
 session.digitBuffer = "";
 session.dialogflowStream = await dialogflowClient.streamingDetectIntent();
 session.dialogflowStream.on('data', response => {
 if(response.hasOwnProperty("detectIntentResponse")) {

setTimeout(onDialogflowIntent,config.dialogDelay,response.detectIntentResponse
,session,connection);
 }
 else if(response.recognitionResult != null &&
 response.recognitionResult.messageType === "TRANSCRIPT" &&
 response.recognitionResult.isFinal === true) {

Verizon Confidential
-13-

 logSpeech(session.callId,' -->
'+response.recognitionResult.transcript);
 }
 else if(response.recognitionResult != null &&
response.recognitionResult.messageType === "END_OF_SINGLE_UTTERANCE") {
 stopStop(session,connection);
 }
 });
 session.dialogflowStream.on('error', err => {
 logDebug('Dialogflow Error: '+err);
 });
 session.dialogflowStream.on('end', () => {
 logDebug('Dialogflow Stream End.');
 });
 const streamRequest = {
 session: session.dialogflowSessionPath,
 queryInput: {
 audio: {
 config: {
 audioEncoding: 'AUDIO_ENCODING_MULAW',
 sampleRateHertz: 8000,
 singleUtterance: false
 }
 },
 languageCode: session.languageCode,
 },
 outputAudioConfig: {
 audioEncoding: 'OUTPUT_AUDIO_ENCODING_MULAW',
 sampleRateHertz: 8000,
 synthesizeSpeechConfig: {
 voice: {
 name: config.ttsVoice[session.languageCode],
 ssmlGender: config.ssmlGender
 }
 }
 }
 };
 session.dialogflowStream.write(streamRequest);

 logMessaging(session.callId,'TO VERIZON IPIVR',JSON.stringify(Record));
 connection.sendUTF(JSON.stringify(Record));
 session.recordActive = true;
}

1.3.5.​ Voice AI Connector for Dialogflow Receives Caller
Audio

●​ The Voice AI Connector for Dialogflow receives audio from the media relay and streams
it to Google Dialogflow

function onAudioData(message,session,connection) {
 try {
 if(session.hasOwnProperty("noInputTimer")) {

Verizon Confidential
-14-

 clearTimeout(session.noInputTimer);
 delete session.noInputTimer;
 clearTimeout(session.interDigitTimer);
 delete session.interDigitTimer;
 }
 if(session.hasOwnProperty("dialogflowStream")) {
 const streamRequest = {
 session: session.dialogflowSessionPath,
 queryInput: {
 audio: { audio: Buffer.from(message.audioData,'base64') },
 languageCode: session.languageCode
 }
 };
 session.dialogflowStream.write(streamRequest);
 if(message.hasOwnProperty("state") && message.state == "complete") {
 session.recordActive = false;
 session.dialogflowStream.end();
 }
 }
 } catch(err) {
 console.log(timestamp() + ' ' + err);
 }
}

●​ Dialogflow performs speech-to-text recognition and reports the results
●​ The Dialogflow API responds with an additional Intent object possibly including audio

prompting

1.3.6.​ DialogFlow determines final intent and exits
The Dialogflow returns a result object with all collected intent and data elements populated and
endInteraction set to true.

function onDialogflowIntent(message,session,connection) {
 session.bargeIn = config.bargeIn;
 clearTimeout(session.noInputTimer);
 delete session.noInputTimer;
 message.queryResult.responseMessages.forEach(function(response) {
 if(response.message === "endInteraction") {
 session.state = "End";
 session.intent = message.queryResult.match;
 session.intent.session = session.dialogflowSessionId;
 } else if(response.message === "liveAgentHandoff") {
 session.state = "End";
 session.intent = message.queryResult.match;
 session.intent.liveAgentHandoff = response.liveAgentHandoff;
 session.intent.parameters = message.queryResult.parameters;
 session.intent.session = session.dialogflowSessionId;
 }
...
 promptAndExit(session,connection);

Verizon Confidential
-15-

}

●​ The Voice AI Connector for Dialogflow plays final prompt audio, if provided, and then
sends an Exit request with the final Intent to the Voice AI network function.

function promptAndExit(session,connection) {
 if(session.hasOwnProperty("prompt")) {
 sendPlay(session.prompt,session,connection);
 } else sendExit(session.intent,session,connection);
}

2.​ Azure Bot with Azure Speech
Synthesis and Azure Recognizer

https://www.verizon.com/business/supportfiles/voice_ai_connector_examples_2025-09-02.tar

2.1.​ Solution Summary

The example integration with Azure Bot uses three Azure APIs in parallel, and coordinates their
asynchronous messaging with the Record and Play websocket APIs of the Voice AI Connector
call control function.

Specifically, when the call is offered to the connector, the Voice AI Connector for Azure Bot
creates a new conversation with the configured Azure Bot. This API will send prompt messages
asynchronously, but will identify recognition turns by the inputHint parameter of the Azure Bot
DirectLine API “message” activity. The prompt messages are then sent to the Azure
Text-To-Speech (TTS) API to render the prompt as audio. As the audio response is streamed
from the TTS API, it is played on the Voice AI network function using the Play websocket
message.

When the inputHint is present and is set to “expectingInput” then the connector will arm the
Record function of the Voice AI network function. When a caller utterance is detected, the
Record function will begin to stream recorded audio to the connector. The connector will then
stream the recorded audio to the Azure Speech-To-Text API (STT) in order to perform
recognition. When the Azure STT API returns a recognition result, it is sent to the Azure Bot as
a “replyToId” message activity type on the DirectLine interface.

Please note that asynchronous chat bots (that is, not directed-dialog IVRs bots) might be
designed to trigger on “acceptingInput” instead, in which case the example can be modified to
trigger recording and recognition asynchronously on that inputHint instead of “expectingInput”
(or both).

This continues until the Azure Bot indicates an end-of-conversation with a prompt containing
METADATA[method=”hangup”]. This hangup metadata can pass additional name-value pairs to

Verizon Confidential
-16-

https://www98.verizon.com/business/supportfiles/voice_ai_connector_examples_2025-09-02.tar

the IPIVR platform for call control logic after the connector ends, e.g
METADATA[method=”hangup” transfer=”+18330220220” language=”es-ES”
agentSelection=”payment_processing”].

2.2.​ Deployment Procedures

2.2.1.​ Create new Azure App Service Web App

This Web App will host the Voice AI Connector for Azure. It will provide communications
between the Voice AI network function and three APIs provided by Azure: Azure Bot, Azure
Recognizer, and Azure Synthesizer.

Verizon Confidential
-17-

Choose Create + Web App on the Azure portal for App Services. Name the new web service and
configure it as follows:

Publish: Code
Runtime stack: Node 22 LTS
Operating System: Linux
Region: *customer preference per Azure App Service Plan*
Hostname: secure unique default hostname

This will create an empty web application that can run the Voice AI Connector for Azure Bot
logic.

Verizon Confidential
-18-

2.2.2.​ Create a deployment in Azure App Service to deploy
the connector to the web application

In this example deployment, we will use the Local Git feature of Azure App Service. Azure will
host a Git repository for this application, and we will be able to upload our custom connector
logic to the service by using git operations such as clone, add, commit and push.

Azure will automatically deploy the connector as a web app whenever we push changes to the
repository. This is the simplest model if you do not already have an Azure deployment strategy
in place as part of a larger web application ecosystem.

To get started, on the App Service sidebar expand Deployment and choose Deployment Center.

Verizon Confidential
-19-

On the Settings tab, choose Source “Local Git”.

Verizon Confidential
-20-

At this point, if you do not already have access enabled as part of a larger application
deployment, it will require you to establish SCM basic credentials in order to authenticate with
the Local Git repository. Click the “enable here” link if so required which will take you to the
Settings -> Configuration sidebar tab:​

Verizon Confidential
-21-

On the Settings -> Configuration tab, enable both SCM Basic Auth Publishing Credentials and
FTP Basic Auth Publishing Credentials.

Verizon Confidential
-22-

​
Click save and confirm:

With authentication enabled, Azure should now allow Local Git to be selected as a Deployment
Source. Click Save on the Deployment Center and a new git repository will be created for your
application:

Verizon Confidential
-23-

After saving, the Deployment Center will display the Git clone URI for your deployment
repository: ​

Next, we need to find our git credentials on the Local Git/FTPS Credentials tab. You will copy
and use both the Local Git username and password whenever you clone or push to the repository.

Verizon Confidential
-24-

2.2.3.​ Enable App Service Firewall

Before deploying the connector, the Azure App Service firewall should be enabled and only
select OHSS server IP addresses allowed to access the service.

Select Settings->Networking from the sidebar and click on the current value for “Public network
access” to change the “Enabled with no access restrictions” default, to enable firewall
restrictions:

Change the “Public network access” setting to “Enabled with select virtual networks and IP
addresses” and an “Unmatched rule action” of “deny”. This will block all inbound traffic.

Verizon Confidential
-25-

Finally, add each OHSS server IP address to the filter rules to enable access from Verizon to the
connector.

Verizon Confidential
-26-

For reference, the OHSS IP addresses are:

166.35.66.78
166.50.89.77
166.46.163.188
166.50.88.5
166.50.29.189
166.35.65.2
166.40.100.100
165.122.81.100
152.189.67.133
152.189.67.181
152.189.74.5
152.189.74.53

2.2.4.​ Perform the first deployment

First, copy the Git clone URI to the clipboard and clone the empty repository to your
workstation, and then unpack the example connector to the directory:

~$ git clone
https://example-ipivr-connector-xxxxxxxxxxxxxx.scm.eastus-01.azurewebsites.net:443/example-ipivr-
connector.git
~$ cd example-ipivr-connector
~/example-ipivr-connector$ tar xzvf ~/Downloads/verizon-connector-azure-bot-r25.03.01.tar.gz
x azure-bot.js
x config.json

Verizon Confidential
-27-

x package.json
x README.md
x start.js

Next, modify the config.json file to add credentials to access the Azure speech APIs:​

~/example-ipivr-connector$ vim config.json

The configuration parameter “botSecret” can be found on the Azure Bot configuration page,
Settings->Channels for DirectLine. View one of the “Secret keys” into the botSecret field:

Verizon Confidential
-28-

The configuration parameter “synthesisSubscriptionKey” can be found on the Azure TTS
configuration page, Overview. Copy one of the keys and copy the value into the
“synthesisSubscriptionKey” configuration parameter value. You can also select the “ttsVoice”
parameters for each language from the Azure Speech Studio Voice Gallery.

Next, the “recognitionSubscriptionKey” value can be set from the STT speech service overview.
Copy the value of a key to the configuration parameter “recognitionSubscriptionKey” value.

Verizon Confidential
-29-

Finally, add the connector and configuration files to the repository and git push the files to
Azure. Azure expects the deployment branch to be a “master” branch so be sure to set that. You
will see the creation of a container image and creation of a container as part of the logging in the
push operation:
​
~/example-ipivr-connector$ git checkout master
~/example-ipivr-connector$ git add azure-bot.js start.js config.json package.json​
~/example-ipivr-connector$ git config --global user.email "you@example.com"
~/example-ipivr-connector$ git config --global user.name "Your Name"
~/example-ipivr-connector$ git commit -m "Initial commit"

Verizon Confidential
-30-

~/example-ipivr-connector$ git push origin main:master
Username for
'https://example-ipivr-connector-xxxxxxxxxxxxxx.scm.eastus-01.azurewebsites.net:443':
$example-ipivr-connector
Password for
'https://%24example-ipivr-connector@example-ipivr-connector-xxxxxxxxxxxxxx.scm.eastus-01.azure
websites.net:443':
Enumerating objects: 6, done.
Counting objects: 100% (6/6), done.
Delta compression using up to 2 threads
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 6.06 KiB | 1.01 MiB/s, done.
Total 6 (delta 0), reused 0 (delta 0), pack-reused 0
remote: Deploy Async
remote: Updating branch 'master'.
remote: Updating submodules.
remote: Preparing deployment for commit id 'f9bbe735f5'.
remote: PreDeployment: context.CleanOutputPath False
remote: PreDeployment: context.OutputPath /home/site/wwwroot
remote: Repository path is /home/site/repository
remote: Running oryx build...
remote: Operation performed by Microsoft Oryx, https://github.com/Microsoft/Oryx
remote: You can report issues at https://github.com/Microsoft/Oryx/issues
remote:
remote: Oryx Version: 0.2.20250522.1+cada9e85564f034d18420f8b5b38b3cf2259f321, Commit:
cada9e85564f034d18420f8b5b38b3cf2259f321, ReleaseTagName: 20250522.1
remote:
remote: Build Operation ID: 329c0522589c59f2
remote: Repository Commit : yyyyyyyyyyyyyyyyyyyyyyyyyyyy
remote: OS Type : bookworm
remote: Image Type : githubactions
remote:
remote: Primary SDK Storage URL: https://oryxsdks-cdn.azureedge.net
remote: Backup SDK Storage URL: https://oryx-cdn.microsoft.io
remote: Detecting platforms...
remote: Detected following platforms:
remote: nodejs: 22.15.0
remote: hugo: 0.124.1
remote: Version '22.15.0' of platform 'nodejs' is not installed. Generating script to install
it...
remote:
remote: Using intermediate directory '/tmp/8ddacda451232cc'.
remote:
remote: Copying files to the intermediate directory...
remote: Done in 0 sec(s).
remote:
remote: Source directory : /tmp/8ddacda451232cc
remote: Destination directory: /home/site/wwwroot
remote:
remote:
remote: Downloading and extracting 'nodejs' version '22.15.0' to
'/tmp/oryx/platforms/nodejs/22.15.0'...
remote: Detected image debian flavor: bookworm.
remote: Downloaded in 0 sec(s).
remote: Verifying checksum...
remote: Extracting contents...
remote: performing sha512 checksum for: nodejs...
remote: Done in 4 sec(s).
remote:
remote: Removing existing manifest file
remote: Creating directory for command manifest file if it does not exist
remote: Creating a manifest file...
remote: Node Build Command Manifest file created.
remote:
remote: Using Node version:
remote: v22.15.0
remote:
remote: Using Npm version:
remote: 10.9.2
remote:
remote: Running 'npm install'...

Verizon Confidential
-31-

remote:
remote:
remote: npm warn deprecated core-js@3.15.2: core-js@<3.23.3 is no longer maintained
and not recommended for usage due to the number of issues. Because of the V8 engine
whims, feature detection in old core-js versions could cause a slowdown up to 100x
even if nothing is polyfilled. Some versions have web compatibility issues. Please,
upgrade your dependencies to the actual version of core-js.
remote:
remote: npm notice
remote: added 57 packages, and audited 58 packages in 12s
remote: npm notice New major version of npm available! 10.9.2 -> 11.4.2
remote:
remote: npm notice Changelog: https://github.com/npm/cli/releases/tag/v11.4.2
remote: 11 packages are looking for funding
remote: npm notice To update run: npm install -g npm@11.4.2
remote: run `npm fund` for details
remote: npm notice
remote:
remote: found 0 vulnerabilities
remote:
remote: Zipping existing node_modules folder...
remote: Done in 3 sec(s).
remote: Preparing output...
remote:
remote: Copying files to destination directory '/home/site/wwwroot'...
remote: Done in 0 sec(s).
remote:
remote: Removing existing manifest file
remote: Creating a manifest file...
remote: Manifest file created.
remote: Copying .ostype to manifest output directory.
remote:
remote: Done in 21 sec(s).
remote: Running post deployment command(s)...
remote:
remote: Generating summary of Oryx build
remote: Parsing the build logs
remote: Found 0 issue(s)
remote:
remote: Build Summary :
remote: ===============
remote: Errors (0)
remote: Warnings (0)
remote:
remote: Triggering recycle (preview mode disabled).
remote: Deployment successful. deployer = deploymentPath =
remote: Deployment Logs :
'https://example-ipivr-connector-xxxxxxxxxxxxxx.scm.eastus-01.azurewebsites.net/newui/
jsonviewer?view_url=/api/deployments/yyyyyyyyyyyyyyyyyyyyyyyyyyyy/log'
To
https://example-ipivr-connector-xxxxxxxxxxxxxx.scm.eastus-01.azurewebsites.net:443/exa
mple-ipivr-connector.git
 * [new branch] master -> master

Verizon Confidential
-32-

2.3.​ Functional Sequence

2.3.1.​ Voice AI connects to an Voice AI Connector for Azure
Bot using Websockets

●​ The customer callplan starts the Voice AI network function with the Voice AI Connector
WSS URI set to the Voice AI Connector for Azure Bot for that customer project.

●​ The Voice AI network function connects to the Voice AI Connector for Azure Bot using
the WSS URI to create a new websocket connection.

●​ The Voice AI network function sends a CallOffered websocket message to the Voice AI
Connector for Azure Bot.

2.3.2.​ Voice AI Connector for Azure Bot creates new
mediaRelay session

●​ The Voice AI Connector for Azure Bot sends a CreateSession mediaRelay message to
Voice AI network function.

●​ The Voice AI network function receives the CreateSession message and proceeds to
create the media relay session.

●​ The Voice AI network function automatically relays all media relay messages from the
media relay to the Voice AI Connector for Azure Bot websocket. The Voice AI
Connector for Azure Bot receives the CreateSession response.

2.3.3.​ Voice AI Connector for Azure Bot Connects to Azure
Bot

●​ The Voice AI Connector for Azure Bot connects to the Azure Bot API using the
appropriate credentials.

●​ The Voice AI Connector for Azure Bot creates a new Azure Bot conversation with the
Azure Bot API.

●​ The Azure Bot DirectLine API sends initial prompt text as a “message” activity.
●​ If (and only if) the message contains an “inputHint” value of “inputExpected”, the Voice

AI Connector for Azure Bot constructs and sends a media relay Record message. The
Voice AI network function relays this message to the media relay, which arms the voice
activity detector.

Verizon Confidential
-33-

2.3.4.​ Voice AI Connector for Azure Bot generates prompt
audio using text-to-speech API

●​ The Voice AI Connector for Azure Bot sends the received prompt text to the Azure
text-to-speech API to render as playable audio.

●​ The Voice AI Connector for Azure Bot constructs and sends one or more media relay
Play messages with the audio received from the Azure text-to-speech API. The format of
the audio sent in the Play message is base64 encoded g.711u.

●​ The Voice AI network function forwards the Play messages to the media relay, which
queues each block of audio and begins audio playback.

2.3.5.​ Voice AI Connector for Azure Bot Receives
Recognition Results

●​ The media relay voice activity detector detects voice and begins streaming AudioData
messages with the caller utterance.

●​ The Voice AI network function continuously relays AudioData messages to the Voice AI
Connector for Azure Bot.

●​ The Voice AI Connector for Azure Bot forwards the recorded audio to Azure Bot
speech-to-text streaming API.

●​ The media relay voice activity detector detects end-of-speech and sends an EndOfSpeech
message.

●​ The Voice AI Connector for Azure Bot receives the EndOfSpeech and closes the
Speech-to-text API voice stream.

●​ The Azure speech-to-text API processes the streamed utterance, and responds with the
recognition results.

2.3.6.​ Azure Bot processes the recognition results
●​ The Voice AI Connector for Azure Bot sends the text-format recognition results to the

Azure Bot and receives additional prompt text
●​ This process continues until the prompt text contains call-control metadata to end the

interaction, transfer the call or hang up, at which point the Voice AI Connector for Azure
Bot sends an Exit message to the Voice AI network function which executes the call
control action.

2.4.​ Voice AI Connector for Azure Bot Low-Level Design

This service is a websocket server that implements the Voice AI websocket protocol to control
Voice AI media relay resources and coordinate the interworking with three Azure API clients:
Azure Bot, Azure TTS and Azure STT.

The sequence of integration follows this general flow:

2.4.1.​ Voice AI connects to this Voice AI Connector for
Azure Bot using Websockets

●​ The Voice AI callplan loads the Voice AI network function with the Voice AI Connector
WSS URI set to this Voice AI Connector for Azure Bot.

●​ The Voice AI network function connects to the Voice AI Connector for Azure Bot to
create a new websocket connection.

Verizon Confidential
-34-

●​ The Voice AI network function sends a CallOffered websocket message to the Voice AI
Connector for Azure Bot.

2.4.2.​ Voice AI Connector for Azure Bot requests a media
relay session for recording and audio playback

The Voice AI Connector for Azure Bot sends a CreateSession message to Voice AI on the
websocket

function sendCreateSession(session,connection) {
 var CreateSession =
 { "method":"CreateSession",
 "type":"mediaRelay",
 "version":1.0,
 "sessionId": uuid.v4(),
 "requestId": uuid.v4()
 };
 logMessaging(session.callId,"TO VERIZON
IPIVR",JSON.stringify(CreateSession));
 connection.sendUTF(JSON.stringify(CreateSession));
}

The Voice AI network function identifies the CreateSession message and proceeds to create the
media relay session with media relay resources.
The Voice AI network function automatically relays all media relay messages from the media
relay to the Voice AI AS websocket. The Voice AI AS receives the CreateSession response.

2.4.3.​ Voice AI Connector for Azure Bot Connects to Azure
Bot

●​ The Voice AI Connector for Azure Bot connects to Azure Bot using the appropriate
credentials and creates a new Azure Bot session using the Azure Bot DirectLine API

function createAzureBot(session, connection) {
 session.directLine = new DirectLine({
 secret: config.botSecret,
 timeout: 10000,
 webSocket: true,
 conversationStartProperties: { /* optional: properties to send to the bot on
conversation start */
 locale: 'en-US'
 }
 });
 session.connectionSubscription =
session.directLine.connectionStatus$.subscribe(connectionStatus => {
 logDebug("DirectLine connection status "+connectionStatus);
 if(connectionStatus == 2)
 startConversation(session,connection);
 });

Verizon Confidential
-35-

●​ The Voice AI Connector for Azure Bot starts a new conversation with an initial utterance
such as “hello bot”

NOTE: There are known race conditions with the DirectLine interface that may cause the
onMembersAdded() event to never fire in the bot when the connection is established. So instead
of triggering the bot on onMembersAdded() we recommend designing your bot to start a
conversation on an explicit message like “hello bot”, as in this example

function startConversation(session,connection) {
 if(session.hasOwnProperty("directLine")) {
 var activity = {
 from: { id: session.sessionId },
 type: "message",
 text: "hello bot"
 };

 logMessaging(session.callId,"TO AZURE",JSON.stringify(activity));
 session.directLine.postActivity(activity).subscribe(
 id => {
 },
 error => {
 logDebug('Error posting activity to bot: '+error)
 }
);
 }
}

●​ The Azure Bot API asynchronously sends prompt text which is queued for a recognition
turn.

 session.activitySubscription = session.directLine.activity$.filter(activity => activity.type
=== 'message').subscribe(message => {
 logMessaging(session.callId,"FROM AZURE", JSON.stringify(message));
 if(message.hasOwnProperty("conversation") && message.conversation.hasOwnProperty("id") &&
!session.hasOwnProperty("conversationId"))
 session.conversationId = message.conversation.id;
 if(message.hasOwnProperty("speak"))
 queueTTSPrompt(message.speak,session,connection);

●​ If the prompt indicates an inputHint of “expectingInput” and bargeIn is enabled, then the

queued prompt text is rendered as audio by the Azure text-to-speech API and the Voice
AI Record API is armed to collect caller utterance audio:

 if(message.hasOwnProperty("inputHint") && message.inputHint === "expectingInput")
 {
 session.turn += 1;
 session.azureResults = "";
 session.dtmfResults = "";
 session.textPrompt = "";
 if(message.hasOwnProperty("speak")) {
 session.textPrompt = message.speak;

Verizon Confidential
-36-

 }
 delete session.recognitionActivityId;
 if(message.hasOwnProperty("id")) {
 session.recognitionActivityId = message.id;
 }
 promptAndRecognize(session,connection);
 }

2.4.4.​ Voice AI Connector for Azure Bot initiates
recognition

●​ As the Azure text-to-speech API returns binary audio, the Voice AI Connector sends Play
websocket messages to Voice AI with the prompt audio, in 80kB chunks.

function sendPlay(session,connection) {
 var start = 0;
 var audio = session.prompt;
 delete session.prompt;
 var length = audio.length;
 while(start < length) {
 var audioBuffer = audio.slice(start,start+80000);
 var Play = {
 "method":"Play",
 "version":"1.0",
 "sessionId":session.sessionId,
 "requestId":uuid.v4(),
 "audioData": audioBuffer.toString('base64'),
 "bargeIn": true
 };
 start += 80000;
 connection.send(JSON.stringify(Play));
 delete Play.audioData;
 logMessaging(session.callId,"TO VERIZON",JSON.stringify(Play));
 }
}

●​ The media relay queues the prompt audio for immediate playback.
●​ The audio play completes, and the Voice AI network function sends a PlayComplete
●​ If bargeIn was not enabled, after PlayComplete, the Voice AI Connector for Azure Bot

constructs and sends a media relay Record message and starts a recognition session with
the Azure speech-to-text API.

●​ If bargeIn is enabled, before the Play message is sent, the Voice AI Connector for Azure
Bot constructs and sends a media relay Record message and starts a recognition session
with Azure speech-to-text API.

function recognize(session,connection) {
 if(session.recordActive)
 return;
 var Record = {
 "method":"Record",

Verizon Confidential
-37-

 "version":"1.0",
 "sessionId":session.sessionId,
 "requestId":uuid.v4(),
 "speechDetectionSensitivity": config.speechDetectionSensitivity,
 "utteranceEndSilence": config.utteranceEndSilence
 };
 session.digitBuffer = "";
 var format = sdk.AudioStreamFormat.getWaveFormat(8000, 8, 1, sdk.AudioFormatTag.MuLaw);
 session.recognizerStream = sdk.AudioInputStream.createPushStream(format);
 var audioConfig = sdk.AudioConfig.fromStreamInput(session.recognizerStream);
 var speechConfig = sdk.SpeechConfig.fromSubscription(config.recognitionSubscriptionKey,
config.recognitionServiceRegion);
 speechConfig.speechRecognitionLanguage = config.recognitionLanguage;
 speechConfig.setProperty(sdk.PropertyId[sdk.PropertyId.Speech_SegmentationSilenceTimeoutMs],
"3000");
 speechConfig.outputFormat=1;
 // create the speech recognizer.
 session.recognizer = new sdk.SpeechRecognizer(speechConfig, audioConfig);
 session.recognizer.recognized = function (s, e) {
 if(e.result.reason === sdk.ResultReason.NoMatch) {
 var noMatchDetail = sdk.NoMatchDetails.fromResult(e.result);
 logSpeech(session.callId,' -[AZURE]->');
 getBotResponse("",session,connection);
 } else {
 var normalizedText = e.result.text;
 try {
 var result = JSON.parse(e.result.json);
 normalizedText = result.NBest[0].ITN;
 } catch(err) { logDebug("Error parsing recognition results: "+err); }
 logSpeech(session.callId,' -[AZURE]-> '+normalizedText);
 session.azureResults = normalizedText;
 getBotResponse(normalizedText,session,connection);
 }
 };

 // start the recognizer and wait for a result.
 session.recognizer.recognizeOnceAsync(
 function (result) {
 session.recognizer.close();
 delete session.recognizer;
 if(session.hasOwnProperty("recognizerStream")) {
 session.recognizerStream.close()
 delete session.recognizerStream;
 sendStop();
 }
 },
 function (err) {
 logDebug("Error in recognizeOnceAsync: "+err);
 });
 logMessaging(session.callId,'TO VERIZON',JSON.stringify(Record));
 connection.send(JSON.stringify(Record));
 session.recordActive = true;
}

●​ The Voice AI network function relays this message to the media relay.

Verizon Confidential
-38-

2.4.5.​ Voice AI Connector for Azure Bot Receives Caller
Audio

●​ The Voice AI Connector for Azure Bot receives audio from the media relay and streams it
to Azure Speech To Text API

function onAudioData(message,session,connection) {
 try {
 if(session.hasOwnProperty("noInputTimer")) {
 clearTimeout(session.noInputTimer);
 delete session.noInputTimer;
 clearTimeout(session.interDigitTimer);
 delete session.interDigitTimer;
 }
 session.state = "Recognizing";
 if(session.hasOwnProperty("recognizerStream")) {
 session.recognizerStream.write(Buffer.from(message.audioData,'base64'));
 if(message.hasOwnProperty("state") && message.state == "complete") {
 if(session.hasOwnProperty("recognizer")) {
 session.recognizer.stopContinuousRecognitionAsync();
 }
 }
 }
 if(message.hasOwnProperty("state") && message.state == "complete") {
 session.recordActive = false;
 }
 } catch(err) {
 logDebug("Error writing to recognizer stream: "+err);
 }
}

●​ The Azure STT API performs speech-to-text recognition and returns the results
●​ The Voice AI Connector for Azure Bot extracts the inverse-text-normalization results of

the recognition and sends this string to the Azure Bot DirectLine API as a “replyToId”
“message”.

●​ The Azure Bot processes this input and further interactions are triggered asynchronously
by the bot as above until the caller hangs up or the Bot indicates an end-of-conversation
using a prompt that contains a METADATA[method=”hangup”] message.

function getBotResponse(text,session,connection) {

setTimeout(() => {
 if(session.hasOwnProperty("directLine")) {
 var activity = {
 from: { id: session.sessionId },
 conversation: { id: session.conversationId },
 replyToId: session.recognitionActivityId,
 type: 'message',
 text: text
 };

 logMessaging(session.callId,"TO AZURE",JSON.stringify(activity));

Verizon Confidential
-39-

 session.directLine.postActivity(activity).subscribe(
 id => {
 },
 error => {
 logDebug('Error posting activity to bot: '+error)
 }
);
 }
 },config.dialogDelay);
 }

●​ The Azure Bot processes this input and further interactions are triggered asynchronously
by the bot as above until the caller hangs up or the Bot indicates an end-of-conversation
using a prompt that contains a METADATA[method=”hangup”] message.

function parseMETADATA(input,session) {
 var output = input;
 const dataPattern = /METADATA\[(([a-zA-Z]+="[^"\\]*(?:\\.[^"\\]*)*"[,\s]*)*)\]/g;
 const paramPattern = /([a-zA-Z]+)="([^"\\]*(?:\\.[^"\\]*)*)"/g;
 const dataMatch = [...input.matchAll(dataPattern)];
 for(const match of dataMatch) {
 output = output.replace(match[0],"");
 const paramMatch = [...match[1].matchAll(paramPattern)];
 var currentData = { };
 for(const param of paramMatch) {
 currentData[param[1]] = param[2];
 }
 if(session) {
 if(currentData.hasOwnProperty("method") && currentData.method === "hangup")
 {
 session.endAfterPlay = true;
 logDebug("Received hangup message, will hangup after play completes.");
 session.intent = currentData;
 }
 }
 }
 return output;
}

3.​ Voice AI Websocket API

The Voice AI Connector product implements a websocket-based API that provides media relay
functions for customer integrations with speech and natural language AI APIs. This messaging
protocol is very simple, enabling a web application to record and playback raw ulaw audio over a
media relay session. This API can be used for simple media relay functions such as integration
with external IVR vendors, mid-call interaction during a conference, etc. For the purposes of
this analysis, it is intended to allow integration with external speech-to-text and text-to-speech
web services.

For all messages the requestId and sessionId properties defined are for simplified correlation at
the application. No error behavior is defined when they are missing. For all messages, the

Verizon Confidential
-40-

version property is informational, behavior is currently undefined if it is missing. No error text is
defined.

3.1.​ CallOffered
Purpose: Initial message sent from Voice AI network function to the Voice AI Connector which
contains network information about the call including call identifiers, calling party and called
party URIs and STIR/SHAKEN identity (when allowed, subject to regulatory constraints)

Property Type Value

method String CallOffered

dnis String Dialed number, e.164 format

ani String Calling party number, e.164 format

media_relay_ava
ilable

Bool true if media relay functions are available (would be
false if Voice AI Connector service was not enabled
for the customer)

appId String Voice AI Connector application id

entryPoint String Voice AI Connector application entry point

headers Array of
object

SIP headers from initial INVITE

Property Type Value

name String name of header

value String value of header

3.2.​ CreateSession
3.2.1.​ Request

Purpose: create a media relay websocket session with no native STT or TTS support. Media is
transported over websockets.

Verizon Confidential
-41-

Property Type Value

method String CreateSession

version String (Optional) Protocol version: 1.0

type String value “mediaRelay”

requestId String Request identifier

direction String Which media direction to we are creating a session
for, in (from caller) or out (from agent)

Example:

{
"method":"CreateSession",
"version":"1.0",
"type":"mediaRelay",
"requestId":"d380d890-fdc6-11ea-a66b-ed36d1ad829b"
}

3.2.2.​ Response
Purpose: session is created, use the provided session id in all future requests

Property Type Value

method String Response

responseTo String CreateSession

version String Protocol version: 1.0

sessionId String Session identifier.

Verizon Confidential
-42-

Property Type Value

requestId String Request identifier.

Example:

{"method":"Response",
"responseTo":"CreateSession",
"version":"1.0",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d380d890-fdc6-11ea-a66b-ed36d1ad829b",
"status":"complete"}

3.3.​ Record
3.3.1.​ Request

Purpose: start a recording

Property Type Value

method String Record

direction String Which media direction to record, in (from caller) or out (from
agent)

version String 1.0

sessionId String Session identifier​

requestId String Request identifier.

Verizon Confidential
-43-

Property Type Value

speechDetectionSensitivity Int64 (Optional) Sensitivity scalar value from 0 to 1000,

0 will never detect speech (recording nothing)

1000 will detect everything (including noise and silence) as
speech (recording everything)

The recommended value of 500 is verified to provide good
performance on normal voice sources.

If not provided, the default behavior is to record all audio without
voice activity detection and the BargeIn event will not fire.

utteranceEndSilence Int64 (Optional) A duration (in milliseconds) to wait after the last
detected voice sample before automatically ending the recording.

Recommended value of 1000 is verified to provide good
performance on normal voice sources.

If not provided the recording will continue until stopped by
StopRecord.

noInputTimeout Int64 (Optional) A duration (in milliseconds) to wait for the start of
speech. Default value is no timeout.

totalTimeout Int64 (Optional) A maximum duration (in milliseconds) to record.
Default is value is no timeout.

startRecognitionTimers Int64 (Optional) If false, noInputTimeout and totalTimeout start upon
receipt of StartRecognitionTimers requests, if true, timers start
immediately.

Example:

{
"method":"Record",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d3819be0-fdc6-11ea-a66b-ed36d1ad829b"
}

Verizon Confidential
-44-

3.3.2.​ Response
Purpose: notification that recording has started, AudioData events will be sent with recording
audio in near real time

Property Type Value

method String Response

responseTo String Record

version String 1.0

sessionId String Session identifier.​

requestId String Request identifier.

errors Array (optional) error event text

status String recording

{
"method":"Response",
"responseTo":"Record",
"version":"1.0",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d3819be0-fdc6-11ea-a66b-ed36d1ad829b",
"errors":[],
"status":"recording"
}

3.3.3.​ Event BargeIn
Purpose: BargeIn notifies the connector that a Play in progress has stopped due to voice activity
detection

Property Type Value

method String Event

Verizon Confidential
-45-

Property Type Value

Event String BargeIn

direction String Which media direction barged, in (voice from caller)
or out (voice from agent)

version String (Optional) Protocol version: 1.0

sessionId String Session identifier.

audioData String Base64 encoded ulaw audio of arbitrary length

Example:

{"method":"Event","event":"BargeIn","version":"1.0","sessionId":"e78ed48f-2025-445c-94f5-65
aa135f41de","requestId":"dcdf8d86-def4-436e-aee8-c5b43ef87d9c"}

3.3.4.​ Event AudioData
Purpose: AudioData contains base64 encoded ulaw raw audio at 8khz, event sent 2.5 times per
second until stopped. Application should stream this data to the speech to text API as each
AudioData message is received. (Note: OpenAI Whisper currently provides only a REST API,
so the audio should be accumulated in that case by the connector until recording is complete,
then the REST request sent with the full recorded utterance)

Property Type Value

method String Event

event String AudioData

version String (Optional) Protocol version: 1.0

direction String Which media direction recorded, in (from caller) or
out (from agent)

sessionId String Session identifier.

Verizon Confidential
-46-

Property Type Value

audioData String Base64 encoded ulaw audio of arbitrary length

state String (Optional) value "complete" when recording
end-of-speech condition is satisfied, ending the
recording

Example:

{"method":"Event","event":"AudioData","version":"1.0","sessionId":"D75AB024-9DEC-4F0B-
A675-E94883717170","audioData":"/w=="}

3.4.​ StopRecord
3.4.1.​ Request

Purpose: stop a recording

Property Type Value

method String StopRecord

version String 1.0

direction String Which media
direction to stop
record, in (from
caller) or out (from
agent)

sessionId String Session identifier.

requestId String Request identifier.

Example:
{
"method":"StopRecord",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d4b3da50-fdc6-11ea-a66b-ed36d1ad829b"
}

Verizon Confidential
-47-

3.4.2.​ Response
Purpose: recording has stopped, AudioData events will no longer be sent

Property Type Value

method String Response

repsonseTo String StopRecord

version String 1.0

sessionId String Session identifier.​

requestId String Request identifier.

errors Array (optional) error event text

status String stopped

{"method":"Response",
"responseTo":"StopRecord",
"version":"1.0",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d4b3da50-fdc6-11ea-a66b-ed36d1ad829b",
"errors":[],
"status":"stopped"}

3.5.​ Play
3.5.1.​ Request

Purpose: schedule the attached audio for playback (audioData contains base64 encoded raw
ulaw audio at 8khz). For streaming audio playback continue to schedule audio as each audio
block is available. The audio is played from the queue in order of receipt.

Verizon Confidential
-48-

Property Type Value

method String Play

version String 1.0

direction String Which media direction to play, in (to the
caller) or out (to the agent)

sessionId String Session identifier

requestId String Request identifier

audioData String Base64 encoded ulaw audio of arbitrary
length

bargeIn Boolean enable bargeIn of play

{"method":"Play",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"audioData":"/w==",
"requestId":"d381c2f0-fdc6-11ea-a66b-ed36d1ad829b"}

3.5.2.​ Response

Purpose: notify the application that the play has been scheduled

Property Type Value

method String Response

responseTo String Play

version String 1.0

sessionId String Session identifier

Verizon Confidential
-49-

Property Type Value

requestId String Request identifier

errors Array (optional) error event text

status String playing

{"method":"Response",
"responseTo":"Play",
"version":"1.0",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d3821110-fdc6-11ea-a66b-ed36d1ad829b",
"errors":[],
"status":"playing"}

3.5.3.​ Event PlayComplete
Purpose: notify the application that all scheduled audios have completed playing

Property Type Value

method String Event

event String PlayComplete

version String 1.0

direction String Which media
direction was
playing, in (to caller)
or out (to agent)

sessionId String Session identifier

requestId String Request identifier

{"method":"Event",
"event":"PlayComplete",
"version":"1.0",

Verizon Confidential
-50-

"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d3823820-fdc6-11ea-a66b-ed36d1ad829b"}

3.6.​ StopPlay
3.6.1.​ Request

Purpose: stop all scheduled audio plays immediately

Property Type Value

method String StopPlay

version String 1.0

direction String Which media
direction to stop
playing, in (to caller)
or out (to agent)

sessionId String Session identifier

requestId String Request identifier

Example:

{"method":"StopPlay",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",
"requestId":"d4b42870-fdc6-11ea-a66b-ed36d1ad829b"}

3.6.2.​ Response
Purpose: notify the application that all plays have stopped

Property Type Value

method String Response

responseTo String StopPlay

version String 1.0

Verizon Confidential
-51-

Property Type Value

sessionId String Session identifier

requestId String Request identifier

errors Array (optional) error event text

status String stopped

Example:
{"method":"Response",
"responseTo":"StopPlay",
"version":"1.0",
"sessionId":"838EEF3D-0C08-4B0F-85B2-D805A6B30927",​
"requestId":"d4b42870-fdc6-11ea-a66b-ed36d1ad829b",
"errors":[],
"status":"stopped"}

3.7.​ ReceivedDTMF
3.7.1.​ Event

Purpose: Notify the connector of a received DTMF digit

Property Type Value

method String Event

event String ReceivedDTMF

direction String Channel DTMF received on “in”
(from caller) or “out” (from agent)

value String Digit 0..9, * or #

Verizon Confidential
-52-

4.​ References

Verizon Confidential
-53-

	1.​Voice AI Connector example using Google Dialogflow CX, Google Text-To-Speech and Google Speech-To-Text
	1.1.​Solution Summary
	1.1.1.​Deployment procedures
	1.1.2.​Security Considerations for Google CCAI

	1.2.​Functional Sequence
	1.2.1.​Voice AI network function connects to a Dialogflow Connector using Websockets
	1.2.2.​Dialogflow Connector requests Speech-to-Text recognition
	1.2.3.​Dialogflow Connector Connects to Dialogflow
	1.2.4.​Dialogflow Connector Receives Recognition Results
	1.2.5.​Dialogflow determines intent and returns results
	1.3.​Google Dialogflow CX Connector Low-Level Design
	1.3.1.​Voice AI network function connects to this Dialogflow Voice AI Connector using Websockets
	1.3.2.​Dialogflow Voice AI Connector requests a media relay session for recording and audio playback
	1.3.3.​Voice AI Connector for Dialogflow Connects to DialogFlow
	1.3.4.​Voice AI Connector for Dialogflow initiates recognition
	1.3.5.​Voice AI Connector for Dialogflow Receives Caller Audio
	1.3.6.​DialogFlow determines final intent and exits

	2.​Azure Bot with Azure Speech Synthesis and Azure Recognizer
	2.1.​Solution Summary
	2.2.​Deployment Procedures
	2.2.1.​Create new Azure App Service Web App
	2.2.2.​Create a deployment in Azure App Service to deploy the connector to the web application
	
	2.2.3.​Enable App Service Firewall
	2.2.4.​Perform the first deployment

	2.3.​Functional Sequence
	2.3.1.​Voice AI connects to an Voice AI Connector for Azure Bot using Websockets
	2.3.2.​Voice AI Connector for Azure Bot creates new mediaRelay session
	2.3.3.​Voice AI Connector for Azure Bot Connects to Azure Bot
	2.3.4.​Voice AI Connector for Azure Bot generates prompt audio using text-to-speech API
	2.3.5.​Voice AI Connector for Azure Bot Receives Recognition Results
	2.3.6.​Azure Bot processes the recognition results
	2.4.​Voice AI Connector for Azure Bot Low-Level Design
	2.4.1.​Voice AI connects to this Voice AI Connector for Azure Bot using Websockets
	2.4.2.​Voice AI Connector for Azure Bot requests a media relay session for recording and audio playback
	2.4.3.​Voice AI Connector for Azure Bot Connects to Azure Bot
	2.4.4.​Voice AI Connector for Azure Bot initiates recognition
	2.4.5.​Voice AI Connector for Azure Bot Receives Caller Audio

	3.​Voice AI Websocket API
	3.1.​CallOffered
	3.2.​CreateSession
	3.2.1.​Request
	3.2.2.​Response

	3.3.​Record
	3.3.1.​Request
	3.3.2.​Response
	3.3.3.​Event BargeIn
	3.3.4.​Event AudioData

	3.4.​StopRecord
	3.4.1.​Request
	3.4.2.​Response

	3.5.​Play
	3.5.1.​Request
	3.5.2.​Response
	3.5.3.​Event PlayComplete

	3.6.​StopPlay
	3.6.1.​Request
	3.6.2.​Response

	3.7.​ReceivedDTMF
	3.7.1.​Event

	4.​References

